Skip to main content

Advertisement

Log in

Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease—different clinical entities and comparable perinatal renal abnormalities

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Differential diagnosis of prenatally detected hyperechogenic and enlarged kidneys can be challenging as there is a broad phenotypic overlap between several rare genetic and non-genetic disorders. Metabolic diseases are among the rarest underlying disorders, but they demand particular attention as their prognosis and postnatal management differ from those of other diseases.

Methods

We report two cases of cystic, hyperechogenic and enlarged kidneys detected on prenatal ultrasound images, resulting in the suspected diagnosis of autosomal recessive polycystic kidney disease (ARPKD). Postnatal clinical course and work-up, however, revealed early, neonatal forms of disorders of fatty acid oxidation (DFAO) in both cases, namely, glutaric acidemia type II, based on identification of the novel, homozygous splice-site mutation c.1117-2A > G in the ETFDH gene, in one case and carnitine palmitoyltransferase II deficiency in the other case.

Results

Review of pre- and postnatal sonographic findings resulted in the identification of some important differences that might help to differentiate DFAO from ARPKD. In DFAO, kidneys are enlarged to a milder degree than in ARPKD, and the cysts are located ubiquitously, including also in the cortex and the subcapsular area. Interestingly, recent studies have pointed to a switch in metabolic homeostasis, referred to as the Warburg effect (aerobic glycolysis), as one of the underlying mechanisms of cell proliferation and cyst formation in cystic kidney disease. DFAO are characterized by the inhibition of oxidative phosphorylation, resulting in aerobic glycolysis, and thus they do resemble the Warburg effect. We therefore speculate that this inhibition might be one of the pathomechanisms of renal hyperproliferation and cyst formation in DFAO analogous to the reported findings in ARPKD.

Conclusions

Neonatal forms of DFAO can be differentially diagnosed in neonates with cystic or hyperechogenic kidneys and necessitate immediate biochemical work-up to provide early metabolic management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sweeney WE, Avner ED (2011) Diagnosis and management of childhood polycystic kidney disease. Pediatr Nephrol 26:675–692

    Article  PubMed  Google Scholar 

  2. Bergmann C (2015) ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr Nephrol 30:15–30

    Article  PubMed  Google Scholar 

  3. Cramer MT, Guay-Woodford LM (2015) Cystic kidney disease: a primer. Adv Chronic Kidney Dis 22:297–305

    Article  PubMed  Google Scholar 

  4. Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Habbig S, Liebau MC (2015) Ciliopathies—from rare inherited cystic kidney diseases to basic cellular function. Mol Cell Pediatr 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Faguer S, Bouissou F, Dumazer P, Guitard J, Bellanné-Chantelot C, Chauveau D (2007) Massively enlarged polycystic kidneys in monozygotic twins with TCF2/HNF-1beta (hepatocyte nuclear factor-1beta) heterozygous whole-gene deletion. Am J Kidney Dis 50:1023–1027

  7. Roume J, Ville Y (2004) Prenatal diagnosis of genetic renal diseases: breaking the code. Ultrasound Obstet Gynecol 24:10–18

  8. Mehler K, Beck BB, Kaul I, Rahimi G, Hoppe B, Kribs A (2011) Respiratory and general outcome in neonates with renal oligohydramnios—a single-centre experience. Nephrol Dial Transplant 26:3514–3522

    Article  PubMed  Google Scholar 

  9. Aulbert W, Kemper MJ (2016) Severe antenatally diagnosed renal disorders: background, prognosis and practical approach. Pediatr Nephrol 31:563–574

    Article  PubMed  Google Scholar 

  10. Avni FE, Garel C, Cassart M, D’Haene N, Hall M, Riccabona M (2012) Imaging and classification of congenital cystic renal diseases. AJR Am J Roentgenol 198:1004–1013

    Article  PubMed  Google Scholar 

  11. Friedmann W, Vogel M, Dimer JS, Luttkus A, Büscher U, Dudenhausen JW (2000) Perinatal differential diagnosis of cystic kidney disease and urinary tract obstruction: anatomic pathologic, ultrasonographic and genetic findings. Eur J Obstet Gynecol Reprod Biol 89:127–133

    Article  CAS  PubMed  Google Scholar 

  12. Decramer S, Parant O, Beaufils S, Clauin S, Guillou C, Kessler S, Aziza J, Bandin F, Schanstra JP, Bellanné-Chantelot C (2007) Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol 18:923–933

    Article  CAS  PubMed  Google Scholar 

  13. Hoyer PF (2015) Clinical manifestations of autosomal recessive polycystic kidney disease. Curr Opin Pediatr 27:186–192

    Article  CAS  PubMed  Google Scholar 

  14. ExAC Browser. Available at: http://exac.broadinstitute.org/. Accessed 9 Nov 2016

  15. dbSNP Home Page. Available at: https://www.ncbi.nlm.nih.gov/projects/SNP/. Accessed 9 Nov 2016

  16. Vujic A, Kosutic J, Bogdanovic R, Prijic S, Milicic B, Igrutinovic Z (2007) Sonographic assessment of normal kidney dimensions in the first year of life—a study of 992 healthy infants. Pediatr Nephrol Berl Ger 22:1143–1150

    Article  Google Scholar 

  17. Di Salvo DN, Park J, Laing FC (2012) Lithium nephropathy: unique sonographic findings. J Ultrasound Med 31:637–644

    Article  PubMed  Google Scholar 

  18. Gunay-Aygun M, Font-Montgomery E, Lukose L, Tuchman M, Graf J, Bryant JC, Kleta R, Garcia A, Edwards H, Piwnica-Worms K, Adams D, Bernardini I, Fischer RE, Krasnewich D, Oden N, Ling A, Quezado Z, Zak C, Daryanani KT, Turkbey B, Choyke P, Guay-Woodford LM, Gahl WA (2010) Correlation of kidney function, volume and imaging findings, and PKHD1 mutations in 73 patients with autosomal recessive polycystic kidney disease. Clin J Am Soc Nephrol 5:972–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chisholm CA, Vavelidis F, Lovell MA, Sweetman L, Roe CR, Roe DS, Frerman FE, Wilson WG (2001) Prenatal diagnosis of multiple acyl-CoA dehydrogenase deficiency: association with elevated alpha-fetoprotein and cystic renal changes. Prenat Diagn 21:856–859

    Article  CAS  PubMed  Google Scholar 

  20. Distelmaier F, Vogel M, Spiekerkötter U, Gempel K, Klee D, Braunstein S, Groneck HP, Mayatepek E, Wendel U, Schwahn B (2007) Cystic renal dysplasia as a leading sign of inherited metabolic disease. Pediatr Nephrol 22:2119–2124

    Article  PubMed  Google Scholar 

  21. Kjaergaard S, Graem N, Larsen T, Skovby F (1998) Recurrent fetal polycystic kidneys associated with glutaric aciduria type II. APMIS 106:1188–1193

    Article  CAS  PubMed  Google Scholar 

  22. Harkin JC, Gill WL, Shapira E (1986) Glutaric acidemia type II. Phenotypic findings and ultrastructural studies of brain and kidney. Arch Pathol Lab Med 110:399–401

    CAS  PubMed  Google Scholar 

  23. Colevas AD, Edwards JL, Hruban RH, Mitchell GA, Valle D, Hutchins GM (1988) Glutaric acidemia type II. Comparison of pathologic features in two infants. Arch Pathol Lab Med 112:1133–1139

    CAS  PubMed  Google Scholar 

  24. Meir K, Fellig Y, Meiner V, Korman SH, Shaag A, Nadjari M, Soffer D, Ariel I (2009) Severe infantile carnitine palmitoyltransferase II deficiency in 19-week fetal sibs. Pediatr Dev Pathol 12:481–486

    Article  PubMed  Google Scholar 

  25. Elpeleg ON, Hammerman C, Saada A, Shaag A, Golzand E, Hochner-Celnikier D, Berger I, Nadjari M (2001) Antenatal presentation of carnitine palmitoyltransferase II deficiency. Am J Med Genet 102:183–187

    Article  CAS  PubMed  Google Scholar 

  26. Whitfield J, Hurst D, Bennett MJ, Sherwood WG, Hogg R, Gonsoulin W (1996) Fetal polycystic kidney disease associated with glutaric aciduria type II: an inborn error of energy metabolism. Am J Perinatol 13:131–134

    Article  CAS  PubMed  Google Scholar 

  27. Claus F, Hindryckx A, de Ravel T, Sandaite I, De Catte L, Moerman P (2011) Postmortem fetal imaging of a metabolic pluricystic kidney disease. Fetal Diagn Ther 30:317–318

    Article  PubMed  Google Scholar 

  28. Bennett MJ, Pollitt RJ, Land JM, Turner MJ, Cheetham CH (1987) Lethal multiple acyl-CoA dehydrogenation deficiency with dysmorphic features. J Inherit Metab Dis 10:95–96

    Article  CAS  PubMed  Google Scholar 

  29. Hockey A, Knowles S, Davies D, Carey W, Hurst J, Goldblatt J (1993) Glutaric aciduria type II, an unusual cause of prenatal polycystic kidneys: report of prenatal diagnosis and confirmation of autosomal recessive inheritance. Birth Defects Orig Artic Ser 29:373–382

    CAS  PubMed  Google Scholar 

  30. Hoganson G, Berlow S, Gilbert EF, Frerman F, Goodman S, Schweitzer L (1987) Glutaric acidemia type II and flavin-dependent enzymes in morphogenesis. Birth Defects Orig Artic Ser 23:65–74

    CAS  PubMed  Google Scholar 

  31. Rocha H, Castiñeiras D, Delgado C, Egea J, Yahyaoui R, González Y, Conde M, González I, Rueda I, Rello L, Vilarinho L, Cocho J (2014) Birth prevalence of fatty acid β-oxidation disorders in Iberia. JIMD Rep 16:89–94

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wieser T (1993) Carnitine palmitoyltransferase II deficiency. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews(®)[Internet]. University of Washington, Seattle; 1993–2016. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20301431

  33. Modell B, Darr A (2002) Science and society: genetic counselling and customary consanguineous marriage. Nat Rev Genet 3:225–229

    Article  CAS  PubMed  Google Scholar 

  34. Frerman FE, Goodman SI (2001) Defects of electron transfer flavoprotein and electron transfer flavoproteinubiquinone oxidoreductase: glutaric acidemia type II. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, p 2357–2365

  35. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  37. Rowe I, Chiaravalli M, Mannella V, Ulisse V, Quilici G, Pema M, Song XW, Xu H, Mari S, Qian F, Pei Y, Musco G, Boletta A (2013) Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 19:488–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Priolo C, Henske EP (2013) Metabolic reprogramming in polycystic kidney disease. Nat Med 19:407–409

    Article  CAS  PubMed  Google Scholar 

  39. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, Young J, Rentsch KM, Spanaus KS, Senn O, Kristanto P, Scheffel H, Weishaupt D, Wüthrich RP (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363:820–829

    Article  CAS  PubMed  Google Scholar 

  40. Walz G, Budde K, Mannaa M, Nürnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Hörl WH, Obermüller N, Arns W, Pavenstädt H, Gaedeke J, Büchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU (2010) Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med 363:830–840

    Article  CAS  PubMed  Google Scholar 

  41. Fischer D-C, Jacoby U, Pape L, Ward CJ, Kuwertz-Broeking E, Renken C, Nizze H, Querfeld U, Rudolph B, Mueller-Wiefel DE, Bergmann C, Haffner D (2009) Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol Dial Transplant 24:1819–1827

    Article  CAS  PubMed  Google Scholar 

  42. Beck Gooz M, Maldonado EN, Dang Y, Amria MY, Higashiyama S, Abboud HE, Lemasters JJ, Bell PD (2014) ADAM17 promotes proliferation of collecting duct kidney epithelial cells through ERK activation and increased glycolysis in polycystic kidney disease. Am J Physiol Ren Physiol 307:F551–F559

    Article  Google Scholar 

  43. Song Y, Selak MA, Watson CT, Coutts C, Scherer PC, Panzer JA, Gibbs S, Scott MO, Willer G, Gregg RG, Ali DW, Bennett MJ, Balice-Gordon RJ (2009) Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD). PLoS One 4:e8329

    Article  PubMed  PubMed Central  Google Scholar 

  44. Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol Berl Ger 26:1039–1056

    Article  Google Scholar 

  45. Vianey-Saban C, Acquaviva C, Cheillan D, Collardeau-Frachon S, Guibaud L, Pagan C, Pettazzoni M, Piraud M, Lamazière A, Froissart R (2016) Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 39:611–624

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Hackl.

Ethics declarations

As our study was a retrospective chart review, informed consent was not required.

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Synopsis of the novel ETFDH splice mutation found at cDNA position c.1117-2A > G in patient 1 of this study. The variant c.1117-2A > G in ETFDH is predicted to be pathogenic by in silico analysis using the following tools: mutation taster (http://www.mutationtaster.org/) and Alamut software (*containing the splice prediction programmes SpliceSiteFinder-like, MAxEntScan, NNSplice, GeneSplicer, and Human Splicing Finder; http://www.interactive-biosoftware.com/doc/alamutvisual/). Assessment of the ExAC-Browser (containing a data set of ∼60,000 exomes from unrelated individuals sequenced as part of various disease-specific and population genetic studies; [14]) well as the dbSNP database [15] gave no evidence that this variant can also be found in non-affected persons. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackl, A., Mehler, K., Gottschalk, I. et al. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease—different clinical entities and comparable perinatal renal abnormalities. Pediatr Nephrol 32, 791–800 (2017). https://doi.org/10.1007/s00467-016-3556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3556-5

Keywords

Navigation