Introduction

There are a lot of generalizations of Banach fixed point principle in the literature. In 2008 Suzuki introduced an interesting generalization of Banach fixed point principle. This interesting fixed-point result is as follows.

Theorem 1

[26] Let (Xd) be a complete metric space, and let T be a mapping on X. Define a non-increasing function \({\theta }\) from [0, 1) into (1/2, 1] by

$$ \theta (r) = \left\{ {\begin{array}{*{20}l} {1,} \hfill & \,\,\quad{0 \le r \le \frac{{\sqrt 5 - 1}}{2}} \hfill \\ {\frac{{1 - r}}{{r^{2} }},} \hfill & \quad{\frac{{\sqrt 5 - 1}}{2} \le r \le \frac{1}{{\sqrt 2 }}} \hfill \\ {\frac{1}{{1 + r}},} \hfill & \quad{\frac{1}{{\sqrt 2 }} \le r < 1.} \hfill \\ \end{array}} \right. $$

Assume that there exists \(r\in [0,1)\), such that

$$\begin{aligned} {\theta (r)}{\mathrm{d}}(x,Tx)\le {\mathrm{d}}(x,y)\Longrightarrow {\mathrm{d}}(Tx,Ty)\le r{\mathrm{d}}(x,y), \end{aligned}$$

for all \(\ x,y\in X\), then there exists a unique fixed-point z of T. Moreover, \({\rm lim}_{{\it n}\rightarrow \infty }T^{{\it n}}x=z\) for all \(x\in X\).

Suzuki proved also the following version of Nemytckii fixed point theorem.

Theorem 2

Let (Xd) be a compact metric space. Let \( T:X\rightarrow X\) be a selfmap, satisfying for all \(x,y\in X\) \(x\ne y\) the condition

$$\begin{aligned} \frac{1}{2}{\mathrm{d}}(x,Tx)\le {\mathrm{d}}(x,y)\Longrightarrow {\mathrm{d}}(Tx,Ty)<{\mathrm{d}}(x,y) \end{aligned}$$

Then T has a unique fixed point in X.

This theorem was also generalized in [6].

In addition to the above results, Kikkawa and Suzuki [11] provided a Kannan-type version of the theorems mentioned above. In [21], a Chatterjea-type version is provided, whereas Popescu [20] obtained a Cirić-type version. Recently, Kikkawa and Suzuki also provided multivalued versions in [12, 13].

Very recently, Hussain et al. in [8] have extended Suzuki’s Theorems 1 and 2, as well as Popescu’s results from [20] to the case of metric-type spaces and cone metric-type spaces.

Czerwik in [5] introduced the concept of b-metric space. Since then, several papers deal with fixed point theory for single-valued and multivalued operators in b-metric spaces (see also [15, 710, 1417, 19, 24, 25]). Pacurar [19] proved results on sequences of almost contractions and fixed points in b-metric spaces. Recently, Hussain and Shah [9] obtained results on KKM mappings in cone b-metric spaces. Khamsi ([14, 15]) also showed that each cone metric space has a b-metric structure.

The aim of this paper is to present some common fixed point results for two mappings under generalized contractive condition in b-metric space, where the b-metric function is not necessarily continuous. Because many of the authors in their works have used the b-metric spaces in which the b-metric function is assumed to be continuous. From this point of view the results obtained in this paper generalize and extend several ones obtained earlier concerning b-metric space.

Consistent with [5] and [25, p. 264], the following definition and results will be needed in the sequel.

Definition 1

[5] Let X be a (nonempty) set and \(b\ge 1\) be a given real number. A function \(d:X\times X\rightarrow R^{+}\) is a b-metric spaces iff, for all \(x,y,z\in X\), the following condition are satisfied:

  1. (b1)

    d\((x,y)=0\)    iff \(x=y,\)

  2. (b2)

    d\((x,y)={\mathrm{d}}(y,x),\)

  3. (b3)

    d\((x,z)\le b[{\mathrm{d}}(x,y)+{\mathrm{d}}(y,z)].\)

The pair \((X,{\mathrm{d}})\) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that of metric spaces, since a b-metric is a metric only if \(b=1.\)

We present an example which shows that a b-metric on X need not be a metric on X. (see also [25, p. 264]):

Example 1

[22] Let (Xd) be a metric space, and \(\rho (x,y)=(d(x,y))^{p},\) where \(p>1\) is a real number. Then \(\rho \) is a b-metric with \(b=2^{p-1}.\)

However, if (Xd) is a metric space, then \((X,\rho )\) is not necessarily a metric space.

For example, if \(X= {\mathbb {R}} \) is the set of real numbers and \(d(x,y)=\left| x-y\right| \) is the usual Euclidean metric, then \(\rho (x,y)=(x-y)^{2}\) is a b-metric on \( {\mathbb {R}} \) with \(b=2,\) but is not a metric on \( {\mathbb {R}} \).

Before stating and proving our results, we present some definition and proposition in b-metric space. We recall first the notions of convergence and completeness in a b-metric space.

Definition 2

[3] Let (Xd) be a b-metric space. Then a sequence \(\{x_{n}\}\) in X is called:

  1. (a)

    convergent if and only if there exists \(x\in X\) such that \( d(x_{n},x)\rightarrow 0\) as \(n\rightarrow \infty \). In this case, we write \(\lim _{n\rightarrow \infty }x_{n}=x.\)

  2. (b)

    Cauchy if and only if \(d(x_{n},x_{m})\rightarrow 0\) as \(n,m\rightarrow \infty .\)

Proposition 1

(see remark 2.1 in [3]) In a b-metric space (Xd) the following assertions hold:

  1. (i)

    a convergent sequence has a unique limit,

  2. (ii)

    each convergent sequence is Cauchy,

Definition 3

[3] The b-metric space (Xd) is complete if every Cauchy sequence in X converges.

It should be noted that, in general a b-metric function d(xy) for \(b>1\) is not jointly continuous in all two of its variables. Now we present an example of a b-metric which is not continuous.

Example 2

(see Example 3 in [8]) Let \(X= {\mathbb {N}} \cup \{\infty \}\) and let \(D:X\times X\rightarrow {\mathbb {R}} ^{+}\) be defined by,

$$D(m,n) = \left\{ {\begin{array}{*{20}l} 0 \hfill & {{\text{if}}\,{\it m}= {\it n}}, \\ {\left| {\frac{1}{m} - \frac{1}{n}} \right|,} \hfill & {{\text{if}}\,{\text{one}}\,{\text{of}}\,{\it m,}\,{\it n}\,{\text{is}}\,{\text{even}}\,{\text{and}}\,{\text{the}}\,{\text{other}}\;{\text{is}}\,{\text{even}}\,{\text{or}}\;\infty \,{\text{,}}} \hfill \\ 5 \hfill & {{\text{if}}\,{\text{one}}\,{\text{of}}\,{\it m},\;{\it n}\,{\text{is}}\,{\text{odd}}\,{\text{and}}\,{\text{other}}\;{\text{is}}\,{\text{odd}}\, {\text{(and}}\;{\text{m}}\ne{\text{n) or }}} \;\infty, \hfill \\ 2 \hfill & {{\text{otherwise}}}. \hfill \\ \end{array} } \right.{\text{ }} $$

Then it is easy to see that for all \(m,n,p\in X,\) we have

$$ D(m,p)\le \frac{5}{2}(D(m,n)+D(n,p)). $$

Thus, (XD) is a b-metric space with \(b=\frac{5}{2}.\) In [8], it is proved that D(xy) is not a continuous function.

Since in general a b-metric is not continuous, we need the following simple lemma about the b-convergent sequences.

Lemma 1

[22] Let \((X,{\mathrm d})\) be a b-metric space with \(b\ge 1\), and suppose that \(\{x_{n}\}\) and \(\{y_{n}\}\) b-converge to xy, respectively. Then, we have

$$ \frac{1}{b^{2}}{\mathrm{d}}(x,y)\le \liminf _{n\rightarrow \infty }{\mathrm{d}}(x_{n},y_{n})\le \limsup _{n\rightarrow \infty }{\mathrm{d}}(x_{n},y_{n})\le b^{2}{\mathrm{d}}(x,y). $$

In particular, if \(x=y\), then \(\lim _{n\rightarrow \infty }{\mathrm{d}}(x_{n},y_{n})=0\). Moreover, for each \(z\in X\) we have

$$ \frac{1}{b}{\mathrm{d}}(x,z)\le \liminf _{n\rightarrow \infty }{\mathrm{d}}(x_{n},z)\le \limsup _{n\rightarrow \infty }{\mathrm{d}}(x_{n},z)\le b{\mathrm{d}}(x,z). $$

Main result

We start our work by proving the following crucial Theorem.

Theorem 3

Let (Xd) be a complete b-metric space. Let \(T,S:X \longrightarrow X\) be two self-maps and \(\theta :[0,1)\longrightarrow (\frac{ 1}{2},1]\) be defined by

$$ \theta (r) = \left\{ {\begin{array}{*{20}l} {1,} \hfill & {0 \le r \le \frac{{\sqrt 5 - 1}}{2}} \hfill \\ {\frac{{1 - r}}{{r^{2} }},} \hfill & {\frac{{\sqrt 5 - 1}}{2} \le r \le \frac{1}{{\sqrt 2 }}} \hfill \\ {\frac{1}{{1 + r}},} \hfill & {\frac{1}{{\sqrt 2 }} \le r < 1.} \hfill \\ \end{array} } \right. $$
(1)

Suppose there exists \(r\in [0,1)\) such that for each \(x,y\in X\), the following condition is satisfied

$$\begin{aligned} \frac{1}{b}\theta &(r)\min \{{\mathrm{d}}(x,Tx),d(x,Sx)\}\le {\mathrm{d}}(x,y)\Longrightarrow \nonumber \\ &\max \left\{ \begin{array}{l} {\mathrm{d}}(Sx,Sy),{\mathrm{d}}(Tx,Ty), \\ {\mathrm{d}}(Sx,Ty),{\mathrm{d}}(Sy,Tx) \end{array} \right\}\le \frac{r}{b^{2}}{\rm d}(x,y). \end{aligned}$$
( 2)

Then TS have a unique common fixed point \(z\in X.\)

Proof

At first we show that if z is a fixed point of S or T, then z is a common fixed point of T and S. Let z be a fixed point of T that is \( Tz=z\) then we show that \(Sz=z\). From

$$ 0=\frac{1}{b}\theta (r)\min \{{\mathrm{d}}(z,Tz),d(z,Sz)\}\le {\mathrm{d}}(z,Tz), $$

it follows

$$\begin{aligned} {\mathrm{d}}(Sz,z)\le & {} \max \left\{ \begin{array}{l} {\mathrm{d}}(Sz,STz),\mathrm{d}(Tz,T^{2}z), \\ {\mathrm{d}}(Sz,T^{2}z),{\mathrm{d}}(STz,Tz) \end{array} \right\} \\\le & {} \frac{r}{b^{2}}{\mathrm{d}}(z,Tz)=0, \end{aligned}$$

thus \(Sz=z\). Therefore it is enough to show that T have a fixed point. Putting \(y=Sx\) in (2)

$$\frac{1}{b}\theta (r)\min \{\mathrm{d}(x,Tx),{\mathrm{d}}(x,Sx)\}\le {\mathrm{d}}(x,Sx), $$

it follows

$$\begin{aligned} \max \left\{ \begin{array}{l} {\mathrm{d}}(Sx,S^{2}x),{\mathrm{d}}(Tx,TSx), \\ {\mathrm{d}}(Sx,TSx),{\mathrm{d}}(S^{2}x,Tx) \end{array} \right\} \le \frac{r}{b^{2}}{\mathrm{d}}(x,Sx), \end{aligned}$$
(3)

for every \(x\in X\). Hence,

$${\mathrm{d}}(Sx,TSx)\le \frac{r}{b^{2}}{\mathrm{d}}(x,Sx). $$
(4)

Now, putting \(y=Tx\) in (2)

$$ \frac{1}{b}\theta (r)\min \{{\mathrm{d}}(x,Tx),{\mathrm{d}}(x,Sx)\}\le {\mathrm{d}}(x,Tx), $$

it follows

$$\begin{aligned} \max \left\{ \begin{array}{l} {\mathrm{d}}(Sx,STx),{\mathrm{d}}(Tx,T^{2}x), \\ {\mathrm{d}}(Sx,T^{2}x),{\mathrm{d}}(STx,Tx) \end{array} \right\} \le \frac{r}{b^{2}}{\mathrm{d}}(x,Tx), \end{aligned}$$
(5)

for every \(x\in X\). Hence,

$$ {\mathrm{d}}(Tx,T^{2}x)\le \frac{r}{b^{2}}{\mathrm{d}}(x,Tx),$$
(6)

and

$$ {\mathrm{d}}(STx,Tx)\le \frac{r}{b^{2}}{\mathrm{d}}(x,Tx). $$
(7)

Let \(x_{0}\in X\) be arbitrary and form the sequence \(\{x_{n}\}\) by, \( x_{2n+1}=Sx_{2n}\) and \(Tx_{2n+1}=x_{2n+2}\) for \(n\in {\mathbb {N}}\cup \{0\}\). We show that \(\{x_{n}\}\) is a Cauchy sequence.

By (4), we have

$$\begin{aligned} {\mathrm{d}}(x_{2n+1},x_{2n+2})\;=\; & {} {\mathrm{d}}(Sx_{2n},TSx_{2n}) \nonumber \\\le & {} \frac{r}{b^{2}}{\mathrm{d}}(x_{2n},Sx_{2n})=\frac{r}{b^{2}}{\mathrm{d}}(x_{2n},x_{2n+1}). \end{aligned}$$
(8)

By (7), we have

$$\begin{aligned} {\mathrm{d}}(x_{2n+1},x_{2n})\;=\; & {} {\mathrm{d}}(STx_{2n-1},Tx_{2n-1}) \\\le & {} \frac{r}{b^{2}}{\mathrm{d}}(x_{2n-1},Tx_{2n-1})=\frac{r}{b^{2}} {\mathrm{d}}(x_{2n-1},x_{2n}). \end{aligned}$$

Therefore,

$$\begin{aligned} {\mathrm{d}}(x_{n},x_{n+1})\le & {} \frac{r}{b^{2}}{\mathrm{d}}(x_{n-1},x_{n}) \\\le & {} \frac{r^{2}}{b^{4}}{\mathrm{d}}(x_{n-2},x_{n-1}) \\&\vdots \\\le & {} \frac{r^{n}}{b^{2n}}{\mathrm{d}}(x_{0},x_{1}). \end{aligned}$$

Also, by definition of b-metric spaces for all \(\ m\ge n,\) we have

$$\begin{aligned} \mathrm{d}(x_{n},x_{m})\le & {} b\mathrm{d}(x_{n},x_{n+1})+b^{2}\;\mathrm{d}(x_{n+1},x_{n+2})+\cdots +b^{m-n-1}\;\mathrm{d}(x_{m-1},x_{m}) \\\le & {} b\frac{r^{n}}{b^{2n}}\;\mathrm{d}(x_{0},x_{1})+b^{2}\frac{r^{n+1}}{b^{2n+2}} \;\mathrm{d}(x_{0},x_{1})+\cdots +b^{m-n-1}\frac{r^{m-1}}{b^{2m-2}}\;\mathrm{d}(x_{0},x_{1}) \\= & {} \frac{r^{n}}{b^{2n-1}}\mathrm{d}(x_{0},x_{1})+\frac{r^{n+1}}{b^{2n}} \mathrm{d}(x_{0},x_{1})+\cdots +\frac{r^{m-1}}{b^{m+n-1}}\;\mathrm{d}(x_{0},x_{1}) \\= & {} \frac{r^{n}}{b^{2n-1}}\left(1+\frac{r}{b}+\cdots +\frac{r^{m-n-1}}{b^{m-n}}\right)\;\mathrm{d}(x_{0},x_{1}) \\\le & {} \frac{r^{n}}{b^{2n-1}}\left(1+\frac{r}{b}+\cdots +(\frac{r}{b} )^{m-n-1}\right)\;\mathrm{d}(x_{0},x_{1}) \\\le & {} \frac{r^{n}}{b^{2n-1}}\mathrm{d}(x_{0},x_{1})\left( \frac{1}{1-\frac{r}{b}} \right) \longrightarrow 0\text { \quad as\quad }{\it n}\rightarrow \infty . \end{aligned}$$

So, we have

$$\begin{aligned} \lim _{n,m\rightarrow \infty }{\mathrm{d}}(x_{{\it n}},x_{m})=0. \end{aligned}$$

Hence, \(\{x_{n}\}\) is a Cauchy sequence. Since X is complete, we conclude \( \{x_{n}\}\) converges to z for some \(z\in X.\) That is

$$ \lim _{n\rightarrow \infty }Sx_{2n}=\lim _{n\rightarrow \infty }x_{2n+1}=z, $$

and

$$ \lim _{n\rightarrow \infty }Tx_{2n+1}=\lim _{n\rightarrow \infty }x_{2n+2}=z. $$

Let us prove now that

$$ {\mathrm{d}}(z,Tx)\le r{\mathrm{d}}(z,x), $$

holds for each \(x\ne z\). Since \({\mathrm{d}}(x_{2n},Sx_{2n})\longrightarrow 0,\) and by Lemma 1

$$\begin{aligned} \frac{1}{b}{\mathrm{d}}(z,x)\le \text { }\underset{ {\it n}\longrightarrow \infty }{\lim \sup \text { }}{\mathrm{d}}(x_{2{\it n}},x), \end{aligned}$$

\(\text { thus} \ \underset{{\it n}\longrightarrow \infty }{\lim \sup \text { }} {\mathrm{d}}(x_{2{\it n}},x)>0\), it follows that there exists a \(x_{2{\it n}_{k}}\in X\) such that

$$\begin{aligned} \frac{1}{b}\theta (r)\min \{{\mathrm{d}}(x_{2n_{k}},Sx_{2n_{k}}),{\mathrm{d}}(x_{2n_{k}},Tx_{2n_{k}})\}\le {\mathrm{d}}(x_{2n_{k}},x). \end{aligned}$$

Assumption (2) implies that for such \(x_{2n_{k}}\)

$$\begin{aligned} {\mathrm{d}}(Sx_{2n_{k}},Tx)\le & {} \max \left\{ \begin{array}{l} {\mathrm{d}}(Sx_{2n_{k}},Sx),{\mathrm{d}}(Tx_{2n_{k}},Tx) \\ {\mathrm{d}}(Sx_{2n_{k}},Tx),{\mathrm{d}}(Sx,Tx_{2n_{k}}) \end{array} \right\} \\\le & {} \frac{r}{b^{2}}{\rm d}(x_{2n_{k}},x), \end{aligned}$$

hence by Lemma 1

$$\begin{aligned} \frac{1}{b}{\mathrm{d}}(z,Tx)\le \text { }\lim \sup _{{\it n}\rightarrow \infty }{\mathrm{d}}(Sx_{2n_{k}},Tx)\le \frac{r}{b^{2}}\text { }\lim \sup _{{\it n}\rightarrow \infty }{\mathrm{d}}(x_{2n_{k}},x)\le \frac{r}{b}{\mathrm{d}}(z,x), \end{aligned}$$

thus for each \(x\ne z\) we get that

$$ {\mathrm{d}}(z,Tx)\le\; rd({\it z},{\it x}). $$
(9)

We will prove that

$$ {\mathrm{d}}(T^{n}z,z)\le\; {\mathrm{d}}(Tz,z), $$
(10)

for each \(n\in {\mathbb {N}}\). For \(n=1\) this relation is obvious. Suppose that it holds for some \(m\in {\mathbb {N}}\). If \(T^{m}z=z\) then \(T^{m+1}z=Tz\) it follows that the above inequality is true. If \(T^{m}z\ne z\), we can apply (9) and the induction hypothesis, we get that

$$\begin{aligned} {\mathrm{d}}(z,T^{m+1}z)\le & {} r{\mathrm{d}}(z,T^{m}z) \\\le & {} r{\mathrm{d}}(Tz,z)\le {\mathrm{d}}(Tz,z), \end{aligned}$$

and (10) is proved by induction.

In order to prove that \(Tz=z\). We consider two possible cases.

Case I. \(0\le r<\frac{1}{\sqrt{2}}\) (and hence \(\theta (r)\le \frac{1-r}{ r^{2}}\)). We will prove first that

$$\begin{aligned} {\mathrm{d}}(T^{n}z,Tz)\le \frac{r}{b}{\mathrm{d}}(Tz,z) \end{aligned}$$
(11)

for each \(n\in {\mathbb {N}}\). For \(n=1\) it is obvious. For \(n=2\) it follows from (6). Suppose that (11) holds for some \(n>2\). Since

$$\begin{aligned} {\mathrm{d}}(Tz,z)\le & {} b{\mathrm{d}}(z,T^{n}z)+b{\mathrm{d}}(T^{n}z,Tz) \\\le & {} b{\mathrm{d}}(z,T^{n}z)+r{\mathrm{d}}(z,Tz), \end{aligned}$$

hence \((1-r){\mathrm{d}}(z,Tz)\le b{\mathrm{d}}(z,T^{n}z)\). It follows [using (6) with \( x=T^{n-1}z\)] that

$$\begin{aligned} \frac{1}{b}\theta (r)\min \{{\mathrm{d}}(ST^{n}z,T^{n}z),{\mathrm{d}}(T^{n}z,T^{n+1}z)\}\le & {} \frac{1-r}{br^{2}}{\mathrm{d}}(T^{n}z,T^{n+1}z) \\\le & {} \frac{1-r}{br^{n}}{\mathrm{d}}(T^{n}z,T^{n+1}z) \\\le & {} \frac{1-r}{br^{n}}.\frac{r^{n}}{b^{2n}}{\mathrm{d}}(z,Tz) \\= & {} \frac{1-r}{b^{2n+1}}{\mathrm{d}}(z,Tz) \\\le & {} \frac{1}{b^{2n}}{\mathrm{d}}(z,T^{n}z) \\\le & {} {\mathrm{d}}(z,T^{n}z). \end{aligned}$$

Assumptions (2) and (10) imply that

$$\begin{aligned}&\max \{{\mathrm{d}}(ST^{n}z,Sz),{\mathrm{d}}(ST^{n}z,Tz), \\ {\mathrm{d}}(T^{n+1}z,Tz),{\mathrm{d}}(Sz,T^{n+1}z)\}\le & {} \frac{r}{b^{2}}\mathrm{d}(z,T^{n}z) \\\le & {} \frac{r}{b^{2}}\mathrm{d}(z,Tz)\le \frac{r}{b}\mathrm{d}(z,Tz). \end{aligned}$$

Thus

$$\begin{aligned} {\mathrm{d}}(T^{n+1}z,Tz)\le \frac{r}{b}{\mathrm{d}}(Tz,z). \end{aligned}$$
(12)

So relation (11) is proved by induction.

Now \(Tz\ne z\) and (11) imply that \(T^{n}z\ne z\) for each \(n\in {\mathbb {N}}\). Hence, (9) implies that

$$\begin{aligned} {\mathrm{d}}(z,T^{n+1}z)\le & {} r{\mathrm{d}}(z,T^{n}z) \\\le & {} r^{2}{\mathrm{d}}(z,T^{n-1}z) \\&\vdots \\\le & {} r^{n}{\mathrm{d}}(z,Tz). \end{aligned}$$

Hence \(\lim _{n\rightarrow \infty }{\mathrm{d}}(z,T^{n+1}z)=0.\) On the other hand using Lemma 1, we have

$$\begin{aligned} \frac{1}{b}{\mathrm{d}}({\it z},\text { }\underset{{\it n}\longrightarrow \infty }{\lim \inf \text { } }{\it T}^{{\it n}+1}z)\le \text { }\underset{{\it n}\longrightarrow \infty }{\lim \inf \text { } }{\mathrm{d}}({\it z},{\it T}^{{\it n}+1}{\it z})=0, \end{aligned}$$

so

$$ {\mathrm{d}}(z,\text { }\underset{{\it n}\longrightarrow \infty }{\lim \inf \text { }} {\it T}^{{\it n}+1}{\it z})=0. $$

Similarly,

$${\mathrm{d}}(z,\text { }\underset{{\it n}\longrightarrow \infty }{\lim \sup \text { }} {\it T}^{{\it n}+1}{\it z})=0, $$

therefore \({\mathrm{d}}({\it z},\text { }\underset{{\it n}\longrightarrow \infty }{\lim \text { }} {\it T}^{{\it n}+1}{\it z})=0.\)

Thus \(T^{n+1}z\longrightarrow z\) and, using Lemma 1 in (12), we have

$$\begin{aligned} \frac{1}{b}{\mathrm{d}}(z,Tz)\le \text { }\underset{{\it n}\longrightarrow \infty }{\lim \sup \text { }}{\mathrm{d}}({\it T}^{{\it n}+1}{\it z},{\it Tz})\le \frac{r}{b}{\mathrm{d}}({\it z},{\it Tz}), \end{aligned}$$

which implies that \({\mathrm{d}}(z,Tz)=0\), a contradiction.

Case II. \(\frac{1}{\sqrt{2}}\le r<1\) (and so \(\theta (r)=\frac{1}{1+r})\). We will prove that there exists a subsequence \(\{x_{n_{k}}\}\) of \(\{x_{n}\}\) such that

$$ \frac{1}{b(1+r)}\min \{{\mathrm{d}}(x_{n_{k}},Sx_{n_{k}}),{\mathrm{d}}(x_{n_{k}},Tx_{n_{k}})\le \;{\mathrm{d}}(x_{n_{k}},z) $$
(13)

holds for each \(k\in {\mathbb {N}}\). Suppose the contrary

$$ \frac{1}{b(1+r)}{\mathrm{d}}(x_{n},Tx_{n})\ge \frac{1}{b(1+r)}\min \{{\mathrm{d}}(x_{n},Sx_{n}),{\mathrm{d}}(x_{n},Tx_{n})\}>{\mathrm{d}}(x_{n},z), $$

and

$$ \frac{1}{b(1+r)}{\mathrm{d}}(x_{n},Sx_{n})\ge \frac{1}{b(1+r)}\min \{{\mathrm{d}}(x_{n},Sx_{n}),{\mathrm{d}}(x_{n},Tx_{n})\}>{\mathrm{d}}(x_{n},z),$$

holds for each \(n\in {\mathbb {N}}\). Now if n is odd then

$$\begin{aligned} \frac{1}{b(1+r)}\mathrm{d}(x_{2n+1},Tx_{2n+1})&\ge {} \frac{1}{b(1+r)}\min \{\mathrm{d}(x_{2n+1},Sx_{2n+1}),\mathrm{d}(x_{2n+1},Tx_{2n+1}) \\&> {} \mathrm{d}(x_{2n+1},z), \end{aligned}$$

if n is even then

$$\begin{aligned} \frac{1}{b(1+r)}{\mathrm{d}}(x_{2n},Sx_{2n})\ge & {} \frac{1}{b(1+r)}\min \{{\mathrm{d}}(x_{2n},Sx_{2n}),{\mathrm{d}}(x_{2n},Tx_{2n}) \\> & {} {\rm d}(x_{2n},z), \end{aligned}$$

holds for each \(n\in {\mathbb {N}}\). Then from (8) we have

$$\begin{aligned} {\mathrm{d}}(x_{2n},x_{2n+1})\le & {} b{\mathrm{d}}(x_{2n},z)+b{\mathrm{d}}(x_{2n+1},z) \\< & {} \frac{b}{b(1+r)}{\mathrm{d}}(x_{2n},Sx_{2n})+\frac{b}{b(1+r)}{\mathrm{d}}(x_{2n+1},Tx_{2n+1}) \\= & {} \frac{1}{1+r}{\mathrm{d}}(x_{2n},x_{2n+1})+\frac{1}{1+r}{\mathrm{d}}(x_{2n+1},x_{2n+2}) \\\le & {} \frac{1}{1+r}{\mathrm{d}}(x_{2n},x_{2n+1})+\frac{r}{b^{2}(1+r)}{\mathrm{d}}(x_{2n},x_{2n+1}) \\\le & {} \frac{1}{1+r}{\mathrm{d}}(x_{2n},x_{2n+1})+\frac{r}{1+r}{\mathrm{d}}(x_{2n},x_{2n+1}) \\\;= \;& {} {\mathrm{d}}(x_{2n},x_{2n+1}), \end{aligned}$$

which is impossible. Hence one of the following inequalities is satisfied for each \(n\in {\mathbb {N}}\):

$$\begin{aligned} \frac{1}{b}\theta (r)\min \{{\mathrm{d}}(x_{2n},Sx_{2n}),{\mathrm{d}}(x_{2n},Tx_{2n})\le {\mathrm{d}}(x_{2n},z). \end{aligned}$$

or

$$\begin{aligned} \frac{1}{b}\theta (r)\min \{{\mathrm{d}}(x_{2n+1},Sx_{2n+1}),{\mathrm{d}}(x_{2n+1},Tx_{2n+1})\le {\mathrm{d}}(x_{2n+1},z). \end{aligned}$$

In other words, there is a subsequence \(\{x_{n_{k}}\}\) of \(\{x_{n}\}\) such that (13) holds for each \(k\in {\mathbb {N}}\). Hence assumption (2) implies that

$$\begin{aligned} {\mathrm{d}}(Sx_{2n},Tz)\le & {} \max \left\{ \begin{array}{l} {\mathrm{d}}(Sx_{2n},Sz),{\mathrm{d}}(Tx_{2n},Tz), \\ {\mathrm{d}}(Tz,Sx_{2n}),{\mathrm{d}}(Sz,Tx_{2n}) \end{array} \right\} \\\le & {} \frac{r}{b^{2}}{\mathrm{d}}(x_{2n},z). \end{aligned}$$

or

$$\begin{aligned} {\mathrm{d}}(Tx_{2n+1},Tz)\le & {} \max \left\{ \begin{array}{l} {\mathrm{d}}(Sx_{2n+1},Sz),{\mathrm{d}}(Tx_{2n+1},Tz), \\ {\mathrm{d}}(Tz,Sx_{2n+1}),{\mathrm{d}}(Sz,Tx_{2n+1}) \end{array} \right\} \\\le & {} \frac{r}{b^{2}}{\mathrm{d}}(x_{2n+1},z). \end{aligned}$$

By Lemma 1, we get

$$\frac{1}{b}{\mathrm{d}}(z,Tz)\le \text { }\underset{n\longrightarrow \infty }{\lim \sup \text { }}\text { }{\mathrm{d}}(Sx_{2{\it n}},Tz)\le \frac{r}{b^{2}}\text { }\underset{{\it n}\longrightarrow \infty }{\lim \sup \text { }}{\mathrm{d}}(x_{2{\it n}},z)\le \frac{r}{b} {\mathrm{d}}({\it z},{\it z})=0, $$

or

$$\frac{1}{b}{\mathrm{d}}(z,Tz)\le \text { }\underset{{\it n}\longrightarrow \infty }{\lim \sup \text { }}\text { }{\mathrm{d}}({\it T}x_{2{\it n}+1},Tz)\le \frac{r}{b^{2}}\text { }\underset{{\it n}\longrightarrow \infty }{\lim \sup \text { }}{\mathrm{d}}(x_{2{\it n}+1},z)\le \frac{r}{b} {\mathrm{d}}(z,z)=0,$$

hence \({\mathrm{d}}(z,Tz)\le 0\), which is possible only if \(Tz=z\).

Thus, we have proved that z is a fixed point of T. The uniqueness of the common fixed point follows easily from (2). Indeed, if \(z,z^{\prime }\) are two common fixed points of T,

$$\begin{aligned} \frac{1}{b}\theta (r)\min \{{\mathrm{d}}(z,Tz),{\mathrm{d}}(z,Sz)\}\le {\mathrm{d}}(z,z^{\prime }), \end{aligned}$$

then (2) implies that

$$ {\mathrm{d}}(z,z^{\prime })=\max \{{\mathrm{d}}(Sz,Sz^{\prime }),{\mathrm{d}}(Tz,Tz^{\prime }),{\mathrm{d}}(Sz,Tz^{\prime }),{\mathrm{d}}(Sz^{\prime },Tz)\}\le \frac{r}{b^{2}}{\mathrm{d}}(z,z^{\prime }),$$

which is possible only if \(z=z^{\prime }\). This proves that z is a unique common fixed point of T and S. \(\square \)

According to Theorem 3 we get the following result.

Corollary 1

Let \((X,\mathrm{d})\) be a complete b-metric space, and let T be a mapping on X. Define a non-increasing function \(\theta \) from [0, 1) into (1/2, 1] by (1).

Suppose there exists \(r\in [0,1)\) such that for each \(x,y\in X\), the following condition is satisfied

$$\begin{aligned} \frac{1}{b}\theta (r)\mathrm{d}(x,Tx)\le \mathrm{d}(x,y)\Longrightarrow \mathrm{d}(Tx,Ty)\le \frac{r}{ b^{2}}\mathrm{d}(x,y), \end{aligned}$$

then there exists a unique fixed-point z of T. Moreover, \( lim_{n\rightarrow \infty }T^{n}x=z\) for all \(x\in X\).

Proof

It is enough set \(S=T\) in the Theorem 3 then the desired result is obtained. \(\square \)

Remark 1

Note that for \(b=1,\) Corollary 1 reduces to Theorem.

Corollary 2

Let (Xd) be a complete b-metric space, and \( f,S,T:X\longrightarrow X\) be three self-maps and \(\theta :[0,1)\longrightarrow (\frac{1}{2},1]\) be defined by (1).

Suppose there exists \(r\in [0,1)\) such that for each \(x,y\in X\), the following condition is satisfied

$$\begin{aligned}&\frac{1}{b}\theta (r)\min \{\mathrm{d}(x,fTx),d(x,fSx)\}\le \mathrm{d}(x,y)\Longrightarrow \\&\quad \max \left\{ \begin{array}{l} \mathrm{d}(fSx,fSy),\mathrm{d}(fTx,fTy), \\ \mathrm{d}(fSx,fTy),\mathrm{d}(fSy,fTx) \end{array} \right\} \le \frac{r}{b^{2}}\mathrm{d}(x,y). \end{aligned}$$

Also, if f is one to one, \(fS=Sf\) and \(fT=Tf\), then we have fT and S have a unique common fixed point \(z\in X.\)

Proof

By Theorem 3, fTfS have a unique common fixed point \(z\in X\). That is \(fSz=fTz=z\), since f is one to one it follows that \(Sz=Tz\). From

$$\begin{aligned} 0=\frac{1}{b}\theta (r)\min \{\mathrm{d}(z,fTz),\mathrm{d}(z,fSz)\}\le \mathrm{d}(z,Tz), \end{aligned}$$

it follows that

$$\begin{aligned} \mathrm{d}(z,Tz)\le & {} \max \left\{ \begin{array}{l} \mathrm{d}(fSz,fSTz),\mathrm{d}(fTz,fT^{2}z), \\ \mathrm{d}(fSz,fT^{2}z),\mathrm{d}(fSTz,fTz) \end{array} \right\} \\= & {} \max \left\{ \begin{array}{l} \mathrm{d}(fSz,SfTz),\mathrm{d}(fTz,TfTz), \\ \mathrm{d}(fSz,TfTz),\mathrm{d}(SfTz,fTz) \end{array} \right\} \\= & {} \max \left\{ \begin{array}{l} \mathrm{d}(z,Sz),\mathrm{d}(z,Tz), \\ \mathrm{d}(z,Tz),\mathrm{d}(Sz,z) \end{array} \right\} \\\le & {} \frac{r}{b^{2}}\mathrm{d}(z,Tz), \end{aligned}$$

it follows that \(Tz=Sz=z\), hence \(fz=fTz=z.\) \(\square \)

Corollary 3

Let \((X,\mathrm{d})\) be a complete metric space, and \( f,S,T:X\longrightarrow X\) be three self-maps and \(\theta :[0,1)\longrightarrow (\frac{1}{2},1]\) be defined by (1).

Suppose there exists \(r\in [0,1)\) such that for each \(x,y\in X\), the following condition is satisfied

$$\begin{aligned}&\theta (r)\min \{\mathrm{d}(x,fTx),\mathrm{d}(x,fSx)\}\le \mathrm{d}(x,y)\Longrightarrow \\&\quad \max \left\{ \begin{array}{l} \mathrm{d}(fSx,fSy),\mathrm{d}(fTx,fTy), \\ \mathrm{d}(fSx,fTy),\mathrm{d}(fSy,fTx) \end{array} \right\} \le r\mathrm{d}(x,y). \end{aligned}$$

Also, if f is one to one, \(fS=Sf\) and \(fT=Tf\), then we have fT and S have a unique common fixed point \(z\in X\).

Proof

It is enough to set \(b=1\) in the Corollary 2 then the desired result is obtained. \(\square \)

Now, in order to support the useability of our results, let us introduce the following examples.

Let \(X=[0,\infty )\). Define \(d:X\times X\rightarrow \mathbb {R^{+}}\) by

$$ {\text{d}}(x,y) = \left\{ {\begin{array}{*{20}l} {0,} \hfill & \quad {x = y} \hfill \\ {(x + y)^{2} ,} \hfill & \quad {x \ne y.} \hfill \\ \end{array} } \right. $$

for all \(x,y\in X\). Then \((X,\mathrm{d})\) is a complete b-metric space for \(b=2\). Define two maps \(T,S:X\rightarrow X\) by

$$\begin{aligned} T(x)\;=\; & {} \ln (1+\frac{1}{4\sqrt{2}}x), \\ S(x)\;=\; & {} \ln (1+\frac{1}{8\sqrt{2}}x) \end{aligned}$$

for \(x\in X\). Then for each \(x,y\in X\) we have

$$\begin{aligned} \dfrac{1}{2}\theta (r)\min \left\{ \mathrm{d}(x,Tx),\mathrm{d}(x,Sx)\right\}= & {} \frac{1}{4} \min \left\{ \begin{array}{l} (x+\ln (1+\frac{1}{4\sqrt{2}}x))^{2}, \\ (x+\ln (1+\frac{1}{8\sqrt{2}}x))^{2} \end{array} \right\} \\= & {} \frac{1}{4}(x+\ln (1+\frac{1}{8\sqrt{2}}x))^{2} \\\le & {} \frac{1}{4}(x+\frac{1}{8\sqrt{2}}x)^{2}=\frac{1}{4}(1+\frac{1}{8\sqrt{ 2}})^{2}x^{2} \\\le & {} x^{2}\le (x+y)^{2}=\mathrm{d}(x,y). \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \max \left\{ \begin{array}{l} \mathrm{d}(Sx,Sy),\mathrm{d}(Tx,Ty), \\ \mathrm{d}(Sx,Ty),\mathrm{d}(Sy,Tx) \end{array} \right\}= & {} \max \left\{ \begin{array}{l} (\ln (1+\frac{1}{8\sqrt{2}}x)+\ln (1+\frac{1}{8\sqrt{2}}y))^{2}, \\ (\ln (1+\frac{1}{4\sqrt{2}}x)+\ln (1+\frac{1}{4\sqrt{2}}y))^{2}, \\ (\ln (1+\frac{1}{8\sqrt{2}}x)+\ln (1+\frac{1}{4\sqrt{2}}y))^{2}, \\ (\ln (1+\frac{1}{4\sqrt{2}}x)+\ln (1+\frac{1}{8\sqrt{2}}y))^{2} \end{array} \right\} \\\le & {} \max \left\{ \begin{array}{l} (\frac{1}{8\sqrt{2}}x+\frac{1}{8\sqrt{2}}y)^{2}, \\ (\frac{1}{4\sqrt{2}}x+\frac{1}{4\sqrt{2}}y)^{2}, \\ (\frac{1}{8\sqrt{2}}x+\frac{1}{4\sqrt{2}}y)^{2}, \\ (\frac{1}{4\sqrt{2}}x+\frac{1}{8\sqrt{2}}y)^{2} \end{array} \right\} \\\le & {} (\frac{1}{4\sqrt{2}}x+\frac{1}{4\sqrt{2}}y)^{2}=[\frac{1}{4\sqrt{2}} (x+y)]^{2} \\\le & {} \frac{1}{4}.\frac{1}{2\sqrt{2}}(x+y)^{2}=\frac{r}{b^{2}}\mathrm{d}(x,y). \end{aligned}$$

Thus T and S satisfy all the hypotheses of Theorem 3 and hence T and S have a unique common fixed point. Indeed, \(r=\dfrac{1}{2\sqrt{2 }}<\frac{\sqrt{5}-1}{2},\) \(\theta (r)=\frac{1}{2}\) and 0 is the unique common fixed point of T and S.

Inspired by [8, Example 4] and [26, Example 1], we present the following example:

Example 3

Let \(X=\{(0,0),(10,12),(12,10),(40,42),(42,40)\}\subset \mathbb {R}^{2}\). Define \(d:X\times X\rightarrow \mathbb {R}^{+}\) by

$$\begin{aligned} d((x_{1},y_{1}),(x_{2},y_{2}))=(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}, \end{aligned}$$

for all \(x=(x_{1},y_{1}),y=(x_{2},y_{2})\in X\). Then (Xd) is a complete b-metric space for \(b=2\). Define two maps \(T,S:X\rightarrow X\) by

$$\begin{aligned} \left\{ \begin{array}{l} T(0,0)=T(10,12)=T(12,10)=(0,0), \\ T(40,42)=(10,12), \\ T(42,40)=(12,10). \end{array} \right. \end{aligned}$$
$$\begin{aligned} \left\{ \begin{array}{l} S(0,0)=S(10,12)=S(12,10)=(0,0), \\ S(40,42)=(12,10), \\ S(42,40)=(10,12). \end{array} \right. \end{aligned}$$

Then for each \(x,y\in X\), if

$$\begin{aligned} \dfrac{1}{2}\frac{\sqrt{2}}{\sqrt{2}+1}\min \{d(x,Tx),d(x,Sx)\}\le d(x,y), \end{aligned}$$

 this implies that

$$\begin{aligned} \max \left\{ \begin{array}{l} \mathrm{d}(Sx,Sy),\mathrm{d}(Tx,Ty), \\ \mathrm{d}(Sx,Ty),\mathrm{d}(Sy,Tx) \end{array} \right\} \le \dfrac{r}{4}\mathrm{d}(x,y). \end{aligned}$$

Because,

  1. i)

    \(\frac{1}{2}\frac{\sqrt{2}}{\sqrt{2}+1}\min \left\{ \mathrm{d}((0,0),T(0,0)),\mathrm{d}((0,0),S(0,0))\right\} \le \mathrm{d}(0,0),y),\quad \forall y\in X\).

  2. ii)

    \(\frac{1}{2}\frac{\sqrt{2}}{\sqrt{2}+1}\min \left\{ \mathrm{d}((10,12),T(10,12)),\mathrm{d}((10,12),S(10,12))\right\} \le \mathrm{d}(10,12),y),\quad \forall y=(0,0),(40,42),(42,40)\).

  3. iii)

    \(\frac{1}{2}\frac{\sqrt{2}}{\sqrt{2}+1}\min \left\{ \mathrm{d}((12,10),T(12,10)),\mathrm{d}((12,10),S(12,10))\right\} \le \mathrm{d}(12,10),y),\quad \forall y=(0,0),(40,42),(42,40)\).

  4. iv)

    \(\frac{1}{2}\frac{\sqrt{2}}{\sqrt{2}+1}\min \left\{ \mathrm{d}((40,42),T(40,42)),\mathrm{d}((40,42),S(40,42))\right\} \le \mathrm{d}(40,42),y),\quad \forall y=(0,0),(10,12),(12,10)\).

  5. v)

    \(\frac{1}{2}\frac{\sqrt{2}}{\sqrt{2}+1}\min \left\{ \mathrm{d}((42,40),T(42,40)),\mathrm{d}((42,40),S(42,40))\right\} \le \mathrm{d}(42,40),y),\quad \forall y=(0,0),(10,12),(12,10)\).

On the other hand, in all of the cases we have

$$ \max \left\{ \begin{array}{l} \mathrm{d}(Sx,Sy),\mathrm{d}(Tx,Ty),\\ \mathrm{d}(Sx,Ty), \mathrm{d}(Sy,Tx) \end{array} \right\} \le \frac{1}{4\sqrt{2}}\mathrm{d}(x,y). $$

Thus T satisfy all the hypotheses of Theorem 3 and hence T has a unique fixed point. Indeed, \(r=\dfrac{1}{\sqrt{2}},\) \(\theta (r)=\frac{ \sqrt{2}}{\sqrt{2}+1}\) and (0, 0) is the unique common fixed point of T and S.

But,

$$\begin{aligned} \mathrm{d}(T(40,42),T(42,40))\le \frac{r}{4}\mathrm{d}((40,42),(42,40)), \end{aligned}$$

that is \(2^{2}+2^{2}\le \frac{r}{4}(2^{2}+2^{2})\) this implies that \(r\ge 4 \). It is contradiction. This proves that Theorem 1 is not applicable to T.