Potential of nanoparticulate carriers for improved drug delivery via skin

  • Alam Zeb
  • Sadia Tabassam Arif
  • Maimoona Malik
  • Fawad Ali Shah
  • Fakhar Ud Din
  • Omer Salman Qureshi
  • Eun-Sun Lee
  • Gwan-Yeong Lee
  • Jin-Ki KimEmail author


Skin as a delivery route for drugs has attracted a great attention in recent decades as it avoids many of the limitations of oral and parenteral administration. However, the excellent barrier property of skin is a major obstacle in the effective transport of drugs through this route. The topmost layer of skin, the “stratum corneum” is the tightest one and is responsible for most of the resistance offered. This necessitates breaching the resistance of the stratum corneum reversibly and transiently in order to achieve a therapeutically meaningful level in systemic circulation or local skin. In last few decades, a number of approaches have been developed to improve the limited drug permeability through stratum corneum. One promising approach is the use of nanoparticulate carriers as they not only facilitate drug delivery across skin but also avoid the drawbacks of conventional skin formulations. This review focuses on nanoparticulate carriers including conventional liposomes, deformable liposomes, ethosomes, niosomes and lipid nanoparticles developed for topical and transdermal drug delivery. A special emphasis is placed on their composition, structure, mechanism of penetration and recent application. The presented data demonstrate the potential of these nanoparticulate carriers for dermal and transdermal delivery.


Nanoparticulate carriers Skin permeation Liposomes Deformable liposomes Ethosomes Niosomes Lipid nanoparticles 



This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017R1A2B4006458).

Compliance with ethical standards

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

The authors report no conflicts of interest in this work.


  1. Aggarwal N, Goindi S (2012) Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis—dermatophytosis. Int J Pharm 437:277–287CrossRefPubMedGoogle Scholar
  2. Alsarra IA, Bosela AA, Ahmed SM, Mahrous GM (2005) Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur J Pharm Biopharm 59:485–490CrossRefPubMedGoogle Scholar
  3. Arora R, Katiyar SS, Kushwah V, Jain S (2017) Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv 14:165–177CrossRefPubMedGoogle Scholar
  4. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, Kim D-D, Kim JS, Yoo BK, Choi H-G (2009) Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm 377:1–8CrossRefPubMedGoogle Scholar
  5. Barry BW (1983) Dermatological formulations: percutaneous absorption. Marcel Dekker, New YorkGoogle Scholar
  6. Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114CrossRefPubMedGoogle Scholar
  7. Barry BW (2002) Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev 54(Supplement):S31–S40CrossRefPubMedGoogle Scholar
  8. Barry BW (2004) Breaching the skin’s barrier to drugs. Nat Biotechnol 22:165–167CrossRefPubMedGoogle Scholar
  9. Benson HA (2006) Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 3:727–737CrossRefPubMedGoogle Scholar
  10. Boinpally RR, Zhou S-L, Poondru S, Devraj G, Jasti BR (2003) Lecithin vesicles for topical delivery of diclofenac. Eur J Pharm Biopharm 56:389–392CrossRefPubMedGoogle Scholar
  11. Bouwstra JA, Ponec M (2006) The skin barrier in healthy and diseased state. Biochim Biophys Acta 1758:2080–2095CrossRefPubMedGoogle Scholar
  12. Cevc G (2012) Rational design of new product candidates: the next generation of highly deformable bilayer vesicles for noninvasive, targeted therapy. J Control Release 160:135–146CrossRefPubMedGoogle Scholar
  13. Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104:226–232CrossRefPubMedGoogle Scholar
  14. Cevc G, Blume G (2001) New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, transfersomes. Biochim Biophys Acta 1514:191–205CrossRefPubMedGoogle Scholar
  15. Cevc G, Blume G (2003) Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, transfersomes®. Biochim Biophys Acta 1614:156–164CrossRefPubMedGoogle Scholar
  16. Cevc G, Vierl U (2010) Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J Control Release 141:277–299CrossRefPubMedGoogle Scholar
  17. Cevc G, Blume G, Schätzlein A, Gebauer D, Paul A (1996) The skin: a pathway for systemic treatment with patches and lipid-based agent carriers. Adv Drug Deliv Rev 18:349–378CrossRefGoogle Scholar
  18. Cevc G, Schätzlein A, Richardsen H (2002) Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta 1564:21–30CrossRefPubMedGoogle Scholar
  19. Chaudhary H, Kohli K, Kumar V (2013) Nano-transfersomes as a novel carrier for transdermal delivery. Int J Pharm 454:367–380CrossRefPubMedGoogle Scholar
  20. Choi W-S, Cho H-I, Lee H-Y, Lee S-H, Choi Y-W (2010) Enhanced occlusiveness of nanostructured lipid carrier (NLC)-based carbogel as a skin moisturizing vehicle. J Pharm Investig 40:373–378CrossRefGoogle Scholar
  21. Chourasia MK, Kang L, Chan SY (2011) Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharm Sci 1:60–67CrossRefGoogle Scholar
  22. Christophers E (1971) Cellular architecture of the stratum corneum. J Investig Dermatol 56:165–169CrossRefPubMedGoogle Scholar
  23. Contri RV, Fiel LA, Pohlmann AR, Guterres SS, Beck RCR (2011) Transport of substances and nanoparticles across the skin and in vitro models to evaluate skin permeation and/or penetration. In: Beck R, Guterres S, Pohlmann A (eds) Nanocosmetics and nanomedicines. Springer, Berlin, pp 3–35CrossRefGoogle Scholar
  24. Dayan N, Touitou E (2000) Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials 21:1879–1885CrossRefPubMedGoogle Scholar
  25. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291–7309CrossRefGoogle Scholar
  26. Dubey V, Mishra D, Asthana A, Jain NK (2006) Transdermal delivery of a pineal hormone: melatonin via elastic liposomes. Biomaterials 27:3491–3496CrossRefPubMedGoogle Scholar
  27. Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK (2007a) Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release 123:148–154CrossRefPubMedGoogle Scholar
  28. Dubey V, Mishra D, Jain NK (2007b) Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm 67:398–405CrossRefPubMedGoogle Scholar
  29. El Maghraby GMM, Williams AC, Barry BW (1999) Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol 51:1123–1134CrossRefPubMedGoogle Scholar
  30. El Maghraby GMM, Williams AC, Barry BW (2001) Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J Pharm Pharmacol 53:1311–1322CrossRefPubMedGoogle Scholar
  31. El Maghraby GMM, Williams AC, Barry BW (2006) Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol 58:415–429CrossRefPubMedGoogle Scholar
  32. El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34:203–222CrossRefPubMedGoogle Scholar
  33. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM (2006) Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 322:60–66CrossRefPubMedGoogle Scholar
  34. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM (2007) Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 332:1–16CrossRefPubMedGoogle Scholar
  35. Fang J-Y, Hong C-T, Chiu W-T, Wang Y-Y (2001) Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm 219:61–72CrossRefGoogle Scholar
  36. Ferreira LS, Ramaldes GA, Nunan EA, Ferreira LA (2004) In vitro skin permeation and retention of paromomycin from liposomes for topical treatment of the cutaneous leishmaniasis. Drug Dev Ind Pharm 30:289–296CrossRefPubMedGoogle Scholar
  37. Gillet A, Grammenos A, Compère P, Evrard B, Piel G (2009) Development of a new topical system: drug-in-cyclodextrin-in-deformable liposome. Int J Pharm 380:174–180CrossRefPubMedGoogle Scholar
  38. Gillet A, Lecomte F, Hubert P, Ducat E, Evrard B, Piel G (2011) Skin penetration behaviour of liposomes as a function of their composition. Eur J Pharm Biopharm 79:43–53CrossRefPubMedGoogle Scholar
  39. Godin B, Touitou E (2003) Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 20:63–102CrossRefPubMedGoogle Scholar
  40. Guo J, Ping Q, Sun G, Jiao C (2000) Lecithin vesicular carriers for transdermal delivery of cyclosporin A. Int J Pharm 194:201–207CrossRefPubMedGoogle Scholar
  41. Hadgraft J (2001) Skin, the final frontier. Int J Pharm 224:1–18CrossRefPubMedGoogle Scholar
  42. Hadgraft J (2004) Skin deep. Eur J Pharm Biopharm 58:291–299CrossRefPubMedGoogle Scholar
  43. Hamishehkar H, Rahimpour Y, Kouhsoltani M (2013) Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 10:261–272CrossRefPubMedGoogle Scholar
  44. Han F, Li S, Yin R, Shi X, Jia Q (2008) Investigation of nanostructured lipid carriers for transdermal delivery of flurbiprofen. Drug Dev Ind Pharm 34:453–458CrossRefPubMedGoogle Scholar
  45. Han S, Kwon S, Jeong Y, Yu E, Park S (2014) Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. Int J Cosmet Sci 36:588–597CrossRefPubMedGoogle Scholar
  46. Handjani-Vila R, Ribier A, Rondot B, Vanlerberghie G (1979) Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci 1:303–314CrossRefPubMedGoogle Scholar
  47. Harris RA, Burnett R, McQuilkin S, McClard A, Simon FR (1987) Effects of ethanol on membrane order: fluorescence studies. Ann N Y Acad Sci 492:125–135CrossRefPubMedGoogle Scholar
  48. Honeywell-Nguyen PL, Bouwstra JA (2005) Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol 2:67–74CrossRefPubMedGoogle Scholar
  49. Jain S, Tiwary AK, Sapra B, Jain NK (2007) Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech 8:E111CrossRefPubMedGoogle Scholar
  50. Javadzadeh Y, Shokri J, Hallaj-Nezhadi S, Hamishehkar H, Nokhodchi A (2010) Enhancement of percutaneous absorption of finasteride by cosolvents, cosurfactant and surfactants. Pharm Dev Technol 15:619–625CrossRefPubMedGoogle Scholar
  51. Jenning V, Schäfer-Korting M, Gohla S (2000) Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 66:115–126CrossRefPubMedGoogle Scholar
  52. Johnson ME, Blankschtein D, Langer R (1997) Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J Pharm Sci 86:1162–1172CrossRefPubMedGoogle Scholar
  53. Junyaprasert VB, Singhsa P, Suksiriworapong J, Chantasart D (2012) Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm 423:303–311CrossRefPubMedGoogle Scholar
  54. Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12:390–399 (quiz 400–391) PubMedGoogle Scholar
  55. Kawadkar J, Pathak A, Kishore R, Chauhan MK (2013) Formulation, characterization and in vitro–in vivo evaluation of flurbiprofen-loaded nanostructured lipid carriers for transdermal delivery. Drug Dev Ind Pharm 39:569–578CrossRefPubMedGoogle Scholar
  56. Kenneth AW, Michael SR (2002) The structure and function of skin. In: Kenneth AW (Ed.) Dermatological and transdermal formulations. CRC Press, Boca Raton, pp 1–39Google Scholar
  57. Khalil RM, Abd-Elbary A, Kassem MA, Ghorab MM, Basha M (2014) Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam. Pharm Dev Technol 19:304–314CrossRefPubMedGoogle Scholar
  58. Khallaf RA, Salem HF, Abdelbary A (2016) 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv 23:3452–3460CrossRefPubMedGoogle Scholar
  59. Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW (2015) Nanocarriers and their actions to improve skin permeability and transdermal drug delivery. Curr Pharm Des 21:2848–2866CrossRefPubMedGoogle Scholar
  60. Kitagawa S, Kasamaki M (2006) Enhanced delivery of retinoic acid to skin by cationic liposomes. Chem Pharm Bull 54:242–244CrossRefPubMedGoogle Scholar
  61. Kumar GP, Rajeshwarrao P (2011) Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 1:208–219CrossRefGoogle Scholar
  62. Kurakula M, Ahmed OA, Fahmy UA, Ahmed TA (2016) Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J Liposome Res 26:288–296CrossRefPubMedGoogle Scholar
  63. Liu D-Z, Chen W-Y, Tasi L-M, Yang S-P (2000) Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloids Surf A Physicochem Eng Asp 172:57–67CrossRefGoogle Scholar
  64. Liu H, Pan W-S, Tang R, Luo S-D (2004) Topical delivery of different acyclovir palmitate liposome formulations through rat skin in vitro. Pharmazie 59:203–206PubMedGoogle Scholar
  65. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X (2007) Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 328:191–195CrossRefPubMedGoogle Scholar
  66. Lopez-Pinto J, Gonzalez-Rodriguez M, Rabasco A (2005) Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm 298:1–12CrossRefGoogle Scholar
  67. Maia CS, Mehnert W, Schäfer-Korting M (2000) Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm 196:165–167CrossRefPubMedGoogle Scholar
  68. Mali N, Darandale S, Vavia P (2013) Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug Deliv Transl Res 3:587–592CrossRefPubMedGoogle Scholar
  69. Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, Esposito S, Carafa M (2014) Niosomes from 80 s to present: the state of the art. Adv Colloid Interface Sci 205:187–206CrossRefPubMedGoogle Scholar
  70. Marto J, Vitor C, Guerreiro A, Severino C, Eleuterio C, Ascenso A, Simoes S (2016) Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf B Biointerfaces 146:616–623CrossRefPubMedGoogle Scholar
  71. Mbah CC, Builders PF, Attama AA (2014) Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv 11:45–59CrossRefPubMedGoogle Scholar
  72. Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101CrossRefGoogle Scholar
  73. Mei Z, Chen H, Weng T, Yang Y, Yang X (2003) Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm 56:189–196CrossRefPubMedGoogle Scholar
  74. Menon GK (2002) New insights into skin structure: scratching the surface. Adv Drug Deliv Rev 54(Supplement):S3–S17CrossRefPubMedGoogle Scholar
  75. Mezei M, Gulasekharam V (1980) Liposomes-a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci 26:1473–1477CrossRefGoogle Scholar
  76. Mishra D, Garg M, Dubey V, Jain S, Jain N (2007) Elastic liposomes mediated transdermal delivery of an anti-hypertensive agent: propranolol hydrochloride. J Pharm Sci 96:145–155CrossRefPubMedGoogle Scholar
  77. Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185:22–36CrossRefPubMedGoogle Scholar
  78. Montenegro L, Sinico C, Castangia I, Carbone C, Puglisi G (2012) Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation. Int J Pharm 434:169–174CrossRefPubMedGoogle Scholar
  79. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH (2001) Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm 52:103–112CrossRefPubMedGoogle Scholar
  80. Muller RH, Mehnert W, Lucks JS, Schwarz C, Zur Muhlen A, Weyhers H, Freitas C, Ruhl D (1995) Solid lipid nanoparticles (SLN)—an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm 41:62–69Google Scholar
  81. Müller RH, Mäder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRefGoogle Scholar
  82. Müller RH, Radtke M, Wissing SA (2002a) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128CrossRefPubMedGoogle Scholar
  83. Müller RH, Radtke M, Wissing SA (2002b) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(Supplement):S131–S155CrossRefPubMedGoogle Scholar
  84. Muzzalupo R, Tavano L (2015) Niosomal drug delivery for transdermal targeting: recent advances. Res Rep Transderm Drug Deliv 4:23–33Google Scholar
  85. Nasr M, Mansour S, Mortada ND, Elshamy A (2008) Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J Microencapsul 25:499–512CrossRefPubMedGoogle Scholar
  86. Neubert RHH (2011) Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 77:1–2CrossRefPubMedGoogle Scholar
  87. Oh YK, Kim MY, Shin JY, Kim TW, Yun MO, Yang SJ, Choi SS, Jung WW, Kim J, Choi HG (2006) Skin permeation of retinol in Tween 20-based deformable liposomes: in-vitro evaluation in human skin and keratinocyte models. J Pharm Pharmacol 58:161–166CrossRefPubMedGoogle Scholar
  88. Padamwar MN, Pokharkar VB (2006) Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability. Int J Pharm 320:37–44CrossRefPubMedGoogle Scholar
  89. Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M (2005) Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 106:99–110CrossRefPubMedGoogle Scholar
  90. Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M (2008) Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm 353:233–242CrossRefPubMedGoogle Scholar
  91. Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M (2012) Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm 81:102–112CrossRefPubMedGoogle Scholar
  92. Park SN, Jo NR, Jeon SH (2014a) Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J Ind Eng Chem 20:1481–1485CrossRefGoogle Scholar
  93. Park SN, Lee HJ, Gu HA (2014b) Enhanced skin delivery and characterization of rutin-loaded ethosomes. Korean J Chem Eng 31:485–489CrossRefGoogle Scholar
  94. Patel V, Misra A, Marfatia Y (2001) Preparation and comparative clinical evaluation of liposomal gel of benzoyl peroxide for acne. Drug Dev Ind Pharm 27:863–870CrossRefPubMedGoogle Scholar
  95. Pegoraro C, MacNeil S, Battaglia G (2012) Transdermal drug delivery: from micro to nano. Nanoscale 4:1881–1894CrossRefPubMedGoogle Scholar
  96. Perez AP, Altube MJ, Schilrreff P, Apezteguia G, Celes FS, Zacchino S, de Oliveira CI, Romero EL, Morilla MJ (2016) Topical amphotericin B in ultradeformable liposomes: formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf B Biointerfaces 139:190–198CrossRefPubMedGoogle Scholar
  97. Perez-Cullell N, Coderch L, de la Maza A, Parra JL, Estelrich J (2000) Influence of the fluidity of liposome compositions on percutaneous absorption. Drug Deliv 7:7–13CrossRefPubMedGoogle Scholar
  98. Pierre MBR, Tedesco AC, Marchetti JM, Bentley MVLB (2001) Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol 1:5–5CrossRefPubMedPubMedCentralGoogle Scholar
  99. Prausnitz MR, Mitragotri S, Langer R (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124CrossRefPubMedGoogle Scholar
  100. Puglia C, Trombetta D, Venuti V, Saija A, Bonina F (2004) Evaluation of in-vivo topical anti-inflammatory activity of indometacin from liposomal vesicles. J Pharm Pharmacol 56:1225–1232CrossRefPubMedGoogle Scholar
  101. Qureshi OS, Kim HS, Zeb A, Choi JS, Kim HS, Kwon JE, Kim MS, Kang JH, Ryou C, Park JS, Kim JK (2017) Sustained release docetaxel-incorporated lipid nanoparticles with improved pharmacokinetics for oral and parenteral administration. J Microencapsul 34:250–261CrossRefPubMedGoogle Scholar
  102. Ramon E, Alonso C, Coderch L, de la Maza A, Lopez O, Parra JL, Notario J (2005) Liposomes as alternative vehicles for sun filter formulations. Drug Deliv 12:83–88CrossRefPubMedGoogle Scholar
  103. Ranade VV, Cannon JB (2011) Drug delivery systems, 3 rd edn. CRC Press, Boca RatonGoogle Scholar
  104. Romero EL, Morilla MJ (2013) Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomedi 8:3171–3186CrossRefGoogle Scholar
  105. Rosen MR (2005) Delivery system handbook for personal care and cosmetic products: technology, applications and formulation, 1st ed. William Andrew, NorwichGoogle Scholar
  106. Scheuplein RJ (1965) Mechanism of percutaneous absorption. 1. Routes of penetration and the influence of solubility. J Investig Dermatol 45:334–346CrossRefPubMedGoogle Scholar
  107. Scheuplein RJ (1976) Permeability of the skin: a review of major concepts and some new developments. J Investig Dermatol 67:672–676CrossRefGoogle Scholar
  108. Shuwaili AHA, Rasool BKA, Abdulrasool AA (2016) Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm 102:101–114CrossRefPubMedGoogle Scholar
  109. Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM (2005) Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release 103:123–136CrossRefPubMedGoogle Scholar
  110. Solanki AB, Parikh JR, Parikh RH, Patel MR (2010) Evaluation of different compositions of niosomes to optimize aceclofenac transdermal delivery. Asian J Pharm Sci 5:87–95Google Scholar
  111. Subongkot T, Ngawhirunpat T (2015) Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. Int J Nanomed 10:4581–4592Google Scholar
  112. Tavano L, Alfano P, Muzzalupo R, de Cindio B (2011) Niosomes vs microemulsions: new carriers for topical delivery of capsaicin. Colloids Surf B Biointerfaces 87:333–339CrossRefPubMedGoogle Scholar
  113. Tavano L, Muzzalupo R, Picci N, de Cindio B (2014) Co-encapsulation of lipophilic antioxidants into niosomal carriers: percutaneous permeation studies for cosmeceutical applications. Colloids Surf B Biointerfaces 114:144–149CrossRefPubMedGoogle Scholar
  114. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160CrossRefPubMedGoogle Scholar
  115. Touitou E (1996) Compositions for applying active substances to or through the skin. US patent 5,540,934Google Scholar
  116. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M (2000a) Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 65:403–418CrossRefPubMedGoogle Scholar
  117. Touitou E, Godin B, Weiss C (2000b) Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev Res 50:406–415CrossRefGoogle Scholar
  118. Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F (2001) Intracellular delivery mediated by an ethosomal carrier. Biomaterials 22:3053–3059CrossRefPubMedGoogle Scholar
  119. Trommer H, Neubert RH (2006) Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol 19:106–121CrossRefPubMedGoogle Scholar
  120. Trotta M, Peira E, Carlotti ME, Gallarate M (2004) Deformable liposomes for dermal administration of methotrexate. Int J Pharm 270:119–125CrossRefPubMedGoogle Scholar
  121. Tupal A, Sabzichi M, Ramezani F, Kouhsoltani M, Hamishehkar H (2016) Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. J Microencapsul 33:372–380CrossRefPubMedGoogle Scholar
  122. Uchechi O, Ogbonna JD, Attama AA (2014) Nanoparticles for dermal and transdermal drug delivery. In: Sezer AD (Ed.) Nanotechnology and nanomaterials: application of nanotechnology in drug delivery. InTech, Rijeka, pp 193–235Google Scholar
  123. Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172:33–70CrossRefGoogle Scholar
  124. Uner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2:289–300Google Scholar
  125. Utreja P, Jain S, Tiwary A (2011) Localized delivery of paclitaxel using elastic liposomes: formulation development and evaluation. Drug Deliv 18:367–376CrossRefPubMedGoogle Scholar
  126. Van der Merwe D, Riviere JE (2005) Comparative studies on the effects of water, ethanol and water/ethanol mixtures on chemical partitioning into porcine stratum corneum and silastic membrane. Toxicol In Vitro 19:69–77CrossRefPubMedGoogle Scholar
  127. Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258:141–151CrossRefPubMedGoogle Scholar
  128. Wissing SA, Müller RH (2003) Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 254:65–68CrossRefPubMedGoogle Scholar
  129. Wissing S, Kayser O, Müller R (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272CrossRefPubMedGoogle Scholar
  130. Zeb A, Qureshi OS, Kim H-S, Cha J-H, Kim H-S, Kim J-K (2016) Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomed 11:3813CrossRefGoogle Scholar
  131. Zeb A, Qureshi OS, Kim HS, Kim MS, Kang JH, Park JS, Kim JK (2017a) High payload itraconazole-incorporated lipid nanoparticles with modulated release property for oral and parenteral administration. J Pharm Pharmacol 69:955–966CrossRefPubMedGoogle Scholar
  132. Zeb A, Qureshi OS, Yu C-H, Akram M, Kim H-S, Kim M-S, Kang J-H, Majid A, Chang S-Y, Bae O-N (2017b) Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. Int J Pharm 525:92–100CrossRefPubMedGoogle Scholar
  133. Zhang Y-T, Shen L-N, Zhao J-H, Feng N-P (2014) Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int J Nanomed 9:669–678CrossRefGoogle Scholar
  134. Zhang Y, Zhang K, Wu Z, Guo T, Ye B, Lu M, Zhao J, Zhu C, Feng N (2015) Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake. Int J Pharm 478:138–146CrossRefPubMedGoogle Scholar
  135. zur Mühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur J Pharm Biopharm 45:149–155CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Pharmaceutical Sciences and Technology 2018

Authors and Affiliations

  • Alam Zeb
    • 1
  • Sadia Tabassam Arif
    • 1
  • Maimoona Malik
    • 1
  • Fawad Ali Shah
    • 1
  • Fakhar Ud Din
    • 2
  • Omer Salman Qureshi
    • 3
  • Eun-Sun Lee
    • 4
  • Gwan-Yeong Lee
    • 4
  • Jin-Ki Kim
    • 4
    Email author
  1. 1.Riphah Institute of Pharmaceutical SciencesRiphah International UniversityIslamabadPakistan
  2. 2.Department of PharmacyQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.Faculty of PharmacyThe University of LahoreLahorePakistan
  4. 4.College of Pharmacy, Institute of Pharmaceutical Science and TechnologyHanyang UniversityAnsanRepublic of Korea

Personalised recommendations