Skip to main content

Advertisement

Log in

Detection of Co2+ via fluorescence resonance energy transfer between synthesized nitrogen-doped carbon quantum dots and Rhodamine 6G

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The doping of carbon quantum dots with nitrogen gives a promising role to improve fluorescence performance. In the present study, nitrogen-doped carbon quantum dots (NCQDs) were synthesized through a facile and economically cheap hydrothermal method from Nerium Oleander L. petals as carbon source and ethylenediamine as nitrogen source. The quantum yield of NCQDs was found to be 3.5%. Here we have studied FRET between NCQDs and Rhodamine 6G (Rh6G) dye. The lifetime of NCQDs decreases from 2.70 to 1.90 ns on addition of Rh6G. The lifetime of acceptor increases from 5.2 ns (in the absence of donor) to 5.5 ns in the presence of donor. FRET process was hindered in the presence of Co2+ only and deactivated the excitation energy of Rh6G. As a consequence, the fluorescence quenching rates increase. So, the FRET between NCQDs and Rh6G allowed enhancing the selectivity and sensitivity of detection of Co2+ ion with limit of detection of 6.45 nM. The method was successfully applied for the detection of Co2+ ions in real water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.N. Baker, G.A. Baker, Angew. Chem. Int. Ed. 49, 6726–6744 (2010)

    Article  CAS  Google Scholar 

  2. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. Soc. 126, 12736–12737 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. H. Wang, P. Sun, S. Cong, J. Wu, L. Gao, Y. Wang, X. Dai, Q. Yi, G. Zou, Lett. Nanoscale Res. 11(27), 1–6 (2016)

    Google Scholar 

  4. J.A. Jallel, K. Pramod, J. Control. Release 269, 302–321 (2018)

    Article  CAS  Google Scholar 

  5. M. Shamsipur, H. Rajabi, Mater. Sci. Eng. C 36, 139–145 (2014)

    Article  CAS  Google Scholar 

  6. A. Barati, M. Shamsipur, H. Abdollahi, Sens. Actuator B Chem. 230, 289–297 (2016)

    Article  CAS  Google Scholar 

  7. J. Zhang, S.H. Yu, Materialstoday 19, 382–393 (2016)

    CAS  Google Scholar 

  8. X. Lu, Z. Zhang, Q. Xia, M. Hou, C. Yan, Z. Chen, Y. Xu, R. Liu, Mater. Sci. Eng. C 82, 190–196 (2017)

    Article  CAS  Google Scholar 

  9. L.A. Chunduri, A. Kurdekar, S. Patnaik, B.V. Dev, T.M. Rattan, V. Kamisetti, Mater. Focus 5, 55–61 (2016)

    Article  CAS  Google Scholar 

  10. B. Das, P. Dadhich, P. Pal, P.K. Srivas, K. Bankoti, S.J. Dhara, Mater. Chem. B 2, 6839–6847 (2014)

    Article  CAS  Google Scholar 

  11. S.R. Ankireddy, J. Kim, Sens. Actuator B Chem. 255(3), 3425–3433 (2018)

    Article  CAS  Google Scholar 

  12. M. Shamsipur, A. Barati, H. Abdollahi, Biosens. Bioelectron. 71, 470–475 (2015)

    Article  PubMed  CAS  Google Scholar 

  13. M. Roushani, M. Shamsipur, H. RezaRajabi, J. Electroanal. Chem. 712, 19–24 (2014)

    Article  CAS  Google Scholar 

  14. Z. Liu, X. Chen, X. Zhang, J.J. Gooding, Y. Zhou, Adv. Healthc. Mater. 5(12), 1380–1385 (2016)

    Article  CAS  Google Scholar 

  15. A.B. Bourlinos, M.A. Karakassides, A. Kouloumpis, D. Gournis, A. Bakandritsos, I. Papagiannouli, P. Aloukos, S. Couri, K. Hola, R. Zboril, M. Krysmann, E.P. Giannelis, Carbon 61, 640–646 (2013)

    Article  CAS  Google Scholar 

  16. X. Guo, C.F. Wang, Z.Y. Yu, L. Chen, S. Chen, ChemComm 48, 2692–2694 (2012)

    CAS  Google Scholar 

  17. X.C. Sun, Y. Lei, Trac Trend Anal Chem. 89, 163–180 (2017)

    Article  CAS  Google Scholar 

  18. A.T. Gilan, E.T. Nassaj, M. Shamsipur, J. Iran. Chem. Soc. 15, 2759–2769 (2018)

    Article  CAS  Google Scholar 

  19. H.R. Rajabi, F. Karimi, H. Kazemdehdashti, L. Kavoshi, J. Photochem. Photobiol. B 181, 98–105 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, J. Hazard. Mater. 250–251, 370–378 (2013)

    Article  PubMed  CAS  Google Scholar 

  21. H.R. Rajabi, F. Shahrezaei, M. Farsi, J. Mater. Sci.: Mater. Electron. 27, 9297–9305 (2016)

    Article  CAS  Google Scholar 

  22. J. Zuo, T. Jiang, X. Zhao, X. Xiong, S. Xiao, Z. Zhu, J. Nanomater. 15, 787862 (2015)

    Google Scholar 

  23. Y. Wang, Y. Xia, Nano Lett. 4, 2047–2050 (2004)

    Article  CAS  Google Scholar 

  24. Y. Wang, A.J. Hu, Mater. Chem. C. 2, 6921–6939 (2014)

    Article  CAS  Google Scholar 

  25. J.G. Zhou, C. Li, R.R. Booker, X.T. Zhou, T.K. Sham, X.L. Sun, Z.F. Ding, J. Am. Chem. Soc. 129, 744–745 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. H. Li, Z. Kang, Y. Liu, S.T. Lee, J. Mater. Chem. 22, 24230–24253 (2012)

    Article  CAS  Google Scholar 

  27. M. Li, M. Wang, L. Zhu, Y. Li, Z. Yan, Z. Shen, X. Cao, Appl. Catal. B 231, 269–276 (2018)

    Article  CAS  Google Scholar 

  28. B.T. Hoan, P.D. Tam, V.H. Pham, J. Nanotechnol. 2019, 1–9 (2019)

    Article  CAS  Google Scholar 

  29. K. Basavaiah, A. Tadesse, D. Ramadevi, M. Hagos, G. Battu, J. Asian, Nanosci. Mater. 1, 36–46 (2018)

    Google Scholar 

  30. B. Rooj, A. Dutta, S. Islam, U. Mandal, J. Fluoresc. 28, 1261–1267 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Liua, Y. Zhaoa, Y. Zhanga, Sens. Actuator B 196, 647–652 (2014)

    Article  CAS  Google Scholar 

  32. D. Carolan, C. Rocks, D.B. Padmanaban, P. Maguire, V. Svrcek, D. Mariott, Sustain. Energy Fuels 1, 1611–1619 (2017)

    Article  CAS  Google Scholar 

  33. S.A. Pakkath, S.S.R. Chetty, P. Selvarasu, V.M. Arumugam, Y. Kumar, L. Periyasamy, M. Santhakumar, S.R. Sadras, K. Santhakumar, ACS Biomater. Sci. Eng. 4(7), 2582–2596 (2018)

    Article  CAS  Google Scholar 

  34. Y. Pan, J. Yang, Y. Fang, J. Zheng, R. Song, C. Yi, J. Mater. Chem. B. 5, 92–101 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. A. Barati, M. Shamsipur, E. Arkanc, L. Hosseinzadeh, H. Abdollahi, Mater. Sci. Eng. C 47, 325–332 (2015)

    Article  CAS  Google Scholar 

  36. G. Zibbu, A.J. Batra, Chem. Pharm. 2(6), 351–358 (2010)

    CAS  Google Scholar 

  37. N. Jing, M. Tian, Y. Wang, Y. Zhang, J. Lumin. 206, 169–175 (2019)

    Article  CAS  Google Scholar 

  38. M. Amjadi, J.L. Manzoori, T. Hallaj, N. Azizi, J. Lumin. 182, 246 (2017)

    Article  CAS  Google Scholar 

  39. J. Wang, F. Qiu, X. Li, H. Wu, J. Xu, X. Niu, J. Pan, T. Zhang, D. Yang, J. Lumin. 188, 230 (2017)

    Article  CAS  Google Scholar 

  40. Y.Y Qu, G. Ren, L. Yu, B. Zhu, F. Chai, L. Chen, J. Lumin. 207, 589 (2019)

    Article  CAS  Google Scholar 

  41. J.M. Yarborough, Appl. Phys. Lett. 24(12), 629–630 (1974)

    Article  CAS  Google Scholar 

  42. M. Shamsipur, V. Nasirian, A. Barati, K. Mansouri, A.V. Raygani, S. Kashanian, Anal. Chim. Acta 966, 62–70 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. K.D. Wegner, F. Morgner, E. Oh, R. Goswami, K. Susumu, M.H. Stewart, I.L. Medintz, N. Hildebrandt, Chem. Mater. 26, 4299–4312 (2014)

    Article  CAS  Google Scholar 

  44. K.F. Chou, A.M. Dennis, Sensors (Basel) 15, 13288–13325 (2015)

    Article  Google Scholar 

  45. R. Roy, S. Hohng, T. Ha, Nat. Methods 5(6), 507516 (2008)

    Article  CAS  Google Scholar 

  46. J.C. Claussen, W.R. Algar, N. Hildebrandt, K. Susumu, M.G. Ancona, I.L. Medintz, Nanoscale 5, 12156–12170 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. S. Hu, Q. Zhao, Q. Chang, J. Yang, J. Liu, RSC Adv. 4, 41069 (2014)

    Article  CAS  Google Scholar 

  48. D. Kong, F. Yan, Z. Han, J. Xu, X. Guo, L. Chen, RSC Adv. 6, 67481–67487 (2016)

    Article  CAS  Google Scholar 

  49. S. Liaoa, F. Zhua, X. Zhaoa, H. Yanga, X. Chena, Sens. Actuator B. 260, 156–164 (2018)

    Article  CAS  Google Scholar 

  50. IR Spectrum Table & Chart Sigma Aldrich

  51. P. Wu, W. Li, Q. Wu, Y. Liua, S. Liu, RSC Adv. 7, 44144–44153 (2017)

    Article  CAS  Google Scholar 

  52. U. Mandal, A. Adhikari, S. Dey, S. Ghosh, S.K. Mondal, K. Bhattacharyya, J. Phys. Chem. B 111, 5896–5902 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Y. Yao, D.M. Tian, H.B. Li, ACS Appl. Mater. Interfaces 2, 684–690 (2010)

    Article  CAS  PubMed  Google Scholar 

  54. M. Zhang, Y.Q. Liu, B.C. Ye, Analyst 137, 601–607 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. P. Kumar, Y.B. Shim, Talanta 77, 1057–1062 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. Z.D. Liu, W.L. Wang, H.J. Xu, L.Q. Sheng, S.S. Chen, D.Q. Huang, F. Sun, Inorg. Chem. Commun. 62, 19–23 (2015)

    Article  CAS  Google Scholar 

  57. C.H. Zeng, X.T. Meng, S.S. Xu, L.J. Han, S.L. Zhong, M.Y. Jia, Sensor. Actuat. B Chem. 221, 127–135 (2015)

    Article  CAS  Google Scholar 

  58. M. Tian, Y. Liu, Y. Wang, Y. Zhang, Anal. Methods 11, 4077–4083 (2019)

    Article  CAS  Google Scholar 

  59. K. Rurack, M. Spieles, Anal. Chem. 83, 1232–1242 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by UGC-BSR research start-up Grant (Ref. No. F.30-383/2017(BSR) dated 15-12-2017).and DST-SERB (File no. EEQ/2018/000964). We thank Prof Sujit Panja for helping us with TCSPC measurement. AD thanks HESTBD, Government of West Bengal, for the SVMCMS fellowship. DM thanks The University of Burdwan for fellowship. The authors would like to thank Department of Chemistry and USIC, the University of Burdwan, for providing infrastructural and instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Rooj, B., Mondal, T. et al. Detection of Co2+ via fluorescence resonance energy transfer between synthesized nitrogen-doped carbon quantum dots and Rhodamine 6G. J IRAN CHEM SOC 17, 1695–1704 (2020). https://doi.org/10.1007/s13738-020-01891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01891-5

Keywords

Navigation