Skip to main content

Advertisement

Log in

Causes of Vitamin D Deficiency and Effect of Vitamin D Supplementation on Metabolic Complications in Obesity: a Review

  • Metabolism (P Trayhurn, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Obese subjects are often characterized by low plasma 25-hydroxy-vitamin D (25OHD) levels. Many explanations for this association have been proposed. Low plasma 25OHD is associated with obesity-related comorbidities such as insulin resistance, type 2 diabetes mellitus, and low-grade inflammation. In this review, we discuss the proposed mechanisms for low 25OHD in obesity and explore the results of recent RCTs on vitamin D (VD) supplementation on obesity and its metabolic complications such as insulin resistance and type 2 diabetes. Although the results from these clinical randomized controlled trials vary, the general picture is that VD treatment of obese individuals does not seem to be an effective treatment of obesity-related metabolic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Vilarrasa N, Maravall J, Estepa A, et al. Low 25-hydroxyvitamin D concentrations in obese women: their clinical significance and relationship with anthropometric and body composition variables. J Endocrinol Investig. 2007;30(8):653–8.

    Article  CAS  Google Scholar 

  2. Snijder MB, van Dam RM, Visser M, et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab. 2005;90(7):4119–23.

    Article  CAS  PubMed  Google Scholar 

  3. Parikh SJ, Edelman M, Uwaifo GI, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89(3):1196–9.

    Article  CAS  PubMed  Google Scholar 

  4. Carlin AM, Rao DS, Meslemani AM, et al. Prevalence of vitamin D depletion among morbidly obese patients seeking gastric bypass surgery. Surg Obes Relat Dis. 2006;2(2):98–103.

    Article  PubMed  Google Scholar 

  5. Stein EM, Strain G, Sinha N, et al. Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study. Clin Endocrinol. 2009;71(2):176–83.

    Article  CAS  Google Scholar 

  6. Bellia A, Garcovich C, D'Adamo M, et al. Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern Emerg Med. 2013;8(1):33–40.

    Article  PubMed  Google Scholar 

  7. Martins D, Wolf M, Pan D, et al. Prevalence of cardiovascular risk factors and the serum levels of 25-hydroxyvitamin D in the United States: data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2007;167(11):1159–65.

    Article  CAS  PubMed  Google Scholar 

  8. Ganji V, Zhang X, Shaikh N, et al. Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–2006. Am J Clin Nutr. 2011;94(1):225–33.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Z, Yuan W, Sun L, et al. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int. 2007;72(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen-Lahav M, Shany S, Tobvin D, et al. Vitamin D decreases NFkappaB activity by increasing IkappaBalpha levels. Nephrol Dial Transplant. 2006;21(4):889–97.

    Article  CAS  PubMed  Google Scholar 

  11. Eleftheriadis T, Antoniadi G, Liakopoulos V, et al. Paricalcitol reduces basal and lipopolysaccharide-induced (LPS) TNF-α and IL-8 production by human peripheral blood mononuclear cells. Int Urol Nephrol. 2010;42(1):181–5.

    Article  CAS  PubMed  Google Scholar 

  12. Dietary reference intakes for calcium and vitamin D. In: Committee to review dietary reference intakes for calcium and vitamin D. Institute of Medicine; 2011.

  13. Holick MF. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr. 2004;79(3):362–71.

    CAS  PubMed  Google Scholar 

  14. Haddad JG, Matsuoka LY, Hollis BW, et al. Human plasma transport of vitamin D after its endogenous synthesis. J Clin Invest. 1993;91(6):2552–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  PubMed  Google Scholar 

  16. Schuster I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta. 2011;1814(1):186–99.

    Article  CAS  PubMed  Google Scholar 

  17. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S–6.

    CAS  PubMed  Google Scholar 

  18. Cheng JB, Levine MA, Bell NH, et al. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A. 2004;101(20):7711–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shinkyo R, Sakaki T, Kamakura M, et al. Metabolism of vitamin D by human microsomal CYP2R1. Biochem Biophys Res Commun. 2004;324(1):451–7.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu JG, Ochalek JT, Kaufmann M, et al. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A. 2013;110(39):15650–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gupta RP, Hollis BW, Patel SB, et al. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. J Bone Miner Res. 2004;19(4):680–8.

    Article  CAS  PubMed  Google Scholar 

  22. Usui E, Noshiro M, Ohyama Y, et al. Unique property of liver mitochondrial P450 to catalyze the two physiologically important reactions involved in both cholesterol catabolism and vitamin D activation. FEBS Lett. 1990;274(1–2):175–7.

    Article  CAS  PubMed  Google Scholar 

  23. Aiba I, Yamasaki T, Shinki T, et al. Characterization of rat and human CYP2J enzymes as vitamin D 25-hydroxylases. Steroids. 2006;71(10):849–56.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu J, DeLuca HF. Vitamin D 25-hydroxylase—four decades of searching, are we there yet? Arch Biochem Biophys. 2012;523(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  25. Takeyama K, Kitanaka S, Sato T, et al. 25-Hydroxyvitamin D3 1-alpha-hydroxylase and vitamin D synthesis. Science. 1997;277(5333):1827–30.

    Article  CAS  PubMed  Google Scholar 

  26. Lawson DE, Fraser DR, Kodicek E, et al. Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature. 1971;230(5291):228–30.

    Article  CAS  PubMed  Google Scholar 

  27. Zehnder D, Bland R, Williams MC, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab. 2001;86(2):888–94.

    CAS  PubMed  Google Scholar 

  28. Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry (Mosc). 1996;35(25):8465–72.

    Article  CAS  Google Scholar 

  29. Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys. 2012;523(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  30. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96.

    CAS  PubMed  Google Scholar 

  31. Haussler MR, Jurutka PW, Mizwicki M, et al. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab. 2011;25(4):543–59.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Zhu J, DeLuca HF. Where is the vitamin D receptor? Arch Biochem Biophys. 2012;523(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Byrne ME, Chang E, et al. 1alpha,25-Dihydroxyvitamin D hydroxylase in adipocytes. J Steroid Biochem Mol Biol. 2008;112(1–3):122–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ching S, Kashinkunti S, Niehaus MD, et al. Mammary adipocytes bioactivate 25-hydroxyvitamin D3 and signal via vitamin D3 receptor, modulating mammary epithelial cell growth. J Cell Biochem. 2011;112(11):3393–405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mawer EB, Backhouse J, Holman CA, et al. The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci. 1972;43(3):413–31.

    Article  CAS  PubMed  Google Scholar 

  36. Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50(3):679–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Heaney RP, Horst RL, Cullen DM, et al. Vitamin D3 distribution and status in the body. J Am Coll Nutr. 2009;28(3):252–6.

    Article  CAS  PubMed  Google Scholar 

  38. Holick MF. Vitamin D, status: measurement, interpretation, and clinical application. Ann Epidemiol. 2009;19(2):73–8.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  PubMed  Google Scholar 

  40. Pereira-Santos M, Costa PR, Assis AM, et al. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015;16(4):341–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fornari R, Francomano D, Greco EA, et al. Lean mass in obese adult subjects correlates with higher levels of vitamin D, insulin sensitivity and lower inflammation. J Endocrinol Investig 2014, DOI: 10.1007/s40618-014-0189-z: 1–6.

  42. Caron-Jobin M, Morisset AS, Tremblay A, et al. Elevated serum 25(OH)D concentrations, vitamin D, and calcium intakes are associated with reduced adipocyte size in women. Obesity. 2011;19(7):1335–41.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng S, Massaro JM, Fox CS, et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes. 2010;59(1):242–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kremer R, Campbell PP, Reinhardt T, et al. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab. 2009;94(1):67–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Young KA, Engelman CD, Langefeld CD, et al. Association of plasma vitamin D levels with adiposity in Hispanic and African Americans. J Clin Endocrinol Metab. 2009;94(9):3306–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Vimaleswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10(2):e1001383. Demonstrates genetic evidence of a causal association between obesity and vitamin D deficiency.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Kull M, Kallikorm R, Lember M. Body mass index determines sunbathing habits: implications on vitamin D levels. Intern Med J. 2009;39(4):256–8.

    Article  CAS  PubMed  Google Scholar 

  48. Bell NH, Epstein S, Greene A, et al. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76(1):370–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin-D3 inhibits the hepatic production of 25-hydroxyvitamin-D in man. Calcif Tissue Int. 1984;36(4):510.

    Google Scholar 

  50. Targher G, Bertolini L, Scala L, et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2007;17(7):517–24.

    Article  CAS  PubMed  Google Scholar 

  51. Eliades M, Spyrou E. Vitamin D: a new player in non-alcoholic fatty liver disease? World J Gastroenterol : WJG. 2015;21(6):1718–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    CAS  PubMed  Google Scholar 

  53. Wamberg L, Christiansen T, Paulsen SK, et al. Expression of vitamin D-metabolizing enzymes in human adipose tissue—the effect of obesity and diet-induced weight loss. Int J Obes. 2013;37(5):651–7.

    Article  CAS  Google Scholar 

  54. Drincic AT, Armas LAG, Van Diest EE. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity. 2012;20:1444–8. Demonstrates that the differences in vitamin D status between lean and obese subjects can be explained by differences in body size.

    Article  CAS  PubMed  Google Scholar 

  55. Drincic A, Fuller E, Heaney RP, et al. 25-Hydroxyvitamin D response to graded vitamin D(3) supplementation among obese adults. J Clin Endocrinol Metab. 2013;98(12):4845–51.

    Article  CAS  PubMed  Google Scholar 

  56. Reinehr T, de SG, Alexy U, et al. Vitamin D status and parathyroid hormone in obese children before and after weight loss. Eur J Endocrinol. 2007;157(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  57. Tzotzas T, Papadopoulou FG, Tziomalos K, et al. Rising serum 25-hydroxy-vitamin D levels after weight loss in obese women correlate with improvement in insulin resistance. J Clin Endocrinol Metab. 2010;95(9):4251–7.

    Article  CAS  PubMed  Google Scholar 

  58. Villareal DT, Shah K, Banks MR, et al. Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: a one-year randomized controlled trial. J Clin Endocrinol Metab. 2008;93(6):2181–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Rock CL, Emond JA, Flatt SW, et al. Weight loss is associated with increased serum 25-hydroxyvitamin D in overweight or obese women. Obesity. 2012;20(11):2296–301.

    Article  CAS  PubMed  Google Scholar 

  60. Mason C, Xiao L, Imayama I, et al. Effects of weight loss on serum vitamin D in postmenopausal women. Am J Clin Nutr. 2011;94(1):95–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Aasheim ET, Johnson LK, Hofso D, et al. Vitamin status after gastric bypass and lifestyle intervention: a comparative prospective study. Surg Obes Relat Dis. 2012;8(2):169–75.

    Article  PubMed  Google Scholar 

  62. Lin E, Armstrong-Moore D, Liang Z, et al. Contribution of adipose tissue to plasma 25-hydroxyvitamin D concentrations during weight loss following gastric bypass surgery. Obesity. 2011;19(3):588–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Tsiftsis D, Mylonas P, Mead N, et al. Bone mass decreases in morbidly obese women after long limb-biliopancreatic diversion and marked weight loss without secondary hyperparathyroidism. A physiological adaptation to weight loss? Obes Surg. 2009;19(11):1497–503.

    Article  PubMed  Google Scholar 

  64. Sinha N, Shieh A, Stein EM, et al. Increased PTH and 1.25(OH)2D levels associated with increased markers of bone turnover following bariatric surgery. Obesity. 2011;19(12):2388–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ruiz-Tovar J, Oller I, Tomas A, et al. Mid-term effects of sleeve gastrectomy on calcium metabolism parameters, vitamin D and parathormone (PTH) in morbid obese women. Obes Surg. 2011;22(5):797–801.

    Article  Google Scholar 

  66. Aasheim ET, Bjorkman S, Sovik TT, et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr. 2009;90(1):15–22.

    Article  PubMed  Google Scholar 

  67. Pramyothin P, Biancuzzo RM, Lu Z, et al. Vitamin D in adipose tissue and serum 25-hydroxyvitamin D after Roux-en-Y gastric bypass. Obesity. 2011;19(11):2228–34.

    Article  CAS  PubMed  Google Scholar 

  68. Kamei Y, Kawada T, Kazuki R, et al. Vitamin D receptor gene expression is up-regulated by 1, 25-dihydroxyvitamin D3 in 3T3-L1 preadipocytes. Biochem Biophys Res Commun. 1993;193(3):948–55.

    Article  CAS  PubMed  Google Scholar 

  69. Querfeld U, Hoffmann MM, Klaus G, et al. Antagonistic effects of vitamin D and parathyroid hormone on lipoprotein lipase in cultured adipocytes. J Am Soc Nephrol. 1999;10(10):2158–64.

    CAS  PubMed  Google Scholar 

  70. Fu M, Sun T, Bookout AL, et al. A nuclear receptor atlas: 3T3-L1 adipogenesis. Mol Endocrinol. 2005;19(10):2437–50.

    Article  CAS  PubMed  Google Scholar 

  71. Bellows CG, Wang YH, Heersche JN, et al. 1,25-dihydroxyvitamin D3 stimulates adipocyte differentiation in cultures of fetal rat calvaria cells: comparison with the effects of dexamethasone. Endocrinology. 1994;134(5):2221–9.

    CAS  PubMed  Google Scholar 

  72. Dace A, Martin-el Yazidi C, Bonne J, et al. Calcitriol is a positive effector of adipose differentiation in the OB 17 cell line: relationship with the adipogenic action of triiodothyronine. Biochem Biophys Res Commun. 1997;232(3):771–6.

    Article  CAS  PubMed  Google Scholar 

  73. Atmani H, Chappard D, Basle MF. Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem. 2003;89(2):364–72.

    Article  CAS  PubMed  Google Scholar 

  74. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290(5):E916–24.

    Article  CAS  PubMed  Google Scholar 

  75. Blumberg JM, Tzameli I, Astapova I, et al. Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J Biol Chem. 2006;281(16):11205–13.

    Article  CAS  PubMed  Google Scholar 

  76. Lee H, Bae S, Yoon Y. Anti-adipogenic effects of 1,25-dihydroxyvitamin D3 are mediated by the maintenance of the wingless-type MMTV integration site/beta-catenin pathway. Int J Mol Med. 2012;30(5):1219–24.

    CAS  PubMed  Google Scholar 

  77. Cianferotti L, Demay MB. VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem. 2007;101(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  78. Mai XM, Chen Y, Camargo Jr CA, et al. Cross-sectional and prospective cohort study of serum 25-hydroxyvitamin D level and obesity in adults: the HUNT study. Am J Epidemiol. 2012;175(10):1029–36.

    Article  PubMed  Google Scholar 

  79. LeBlanc ES, Rizzo JH, Pedula KL, et al. Associations between 25-hydroxyvitamin D and weight gain in elderly women. J Womens Health (Larchmt). 2012;21(10):1066–73.

    Article  PubMed Central  Google Scholar 

  80. Zhu W, Cai D, Wang Y, et al. Calcium plus vitamin D3 supplementation facilitated fat loss in overweight and obese college students with very-low calcium consumption: a randomized controlled trial. Nutr J 2013; 12(8).

  81. Rosenblum JL, Castro M, Moore CE, et al. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. Am J Clin Nutr. 2012;95(1):101–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Sneve M, Figenschau Y, Jorde R. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur J Endocrinol. 2008;159(6):675–84.

    Article  CAS  PubMed  Google Scholar 

  83. Wamberg L, Kampmann U, Stodkilde-Jorgensen H, et al. Effects of vitamin D supplementation on body fat accumulation, inflammation, and metabolic risk factors in obese adults with low vitamin D levels—results from a randomized trial. Eur J Intern Med. 2013;24(7):644–9.

    Article  CAS  PubMed  Google Scholar 

  84. Salehpour A, Shidfar F, Hosseinpanah F, et al. Does vitamin D3 supplementation improve glucose homeostasis in overweight or obese women? A double-blind, randomized, placebo-controlled clinical trial. Diabet Med. 2013;30(12):1477–81.

    Article  CAS  PubMed  Google Scholar 

  85. Mason C, Xiao L, Imayama I, et al. Vitamin D3 supplementation during weight loss: a double-blind randomized controlled trial. Am J Clin Nutr. 2014;99(5):1015–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Shab-Bidar S, Neyestani TR, Djazayery A, et al. Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: a randomized double-blind clinical trial. BMC Med 2011; 9(125).

  87. Kampmann U, Mosekilde L, Juhl C, et al. Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency—a double-blind, randomized, placebo-controlled trial. Metabolism. 2014;63(9):1115–24.

    Article  CAS  PubMed  Google Scholar 

  88. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  CAS  PubMed  Google Scholar 

  89. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49.

    Article  CAS  PubMed  Google Scholar 

  91. Lorente-Cebrian S, Eriksson A, Dunlop T, et al. Differential effects of 1alpha,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. Eur J Nutr. 2012;51(3):335–42.

    Article  CAS  PubMed  Google Scholar 

  92. Wamberg L, Cullberg KB, Rejnmark L, et al. Investigations of the anti-inflammatory effects of vitamin D in adipose tissue: results from an in vitro study and a randomized controlled trial. Horm Metab Res. 2013;45(6):456–62.

    Article  CAS  PubMed  Google Scholar 

  93. Pittas AG, Harris SS, Stark PC, et al. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care. 2007;30(4):980–6.

    Article  CAS  PubMed  Google Scholar 

  94. Zittermann A, Frisch S, Berthold HK, et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 2009;89(5):1321–7.

    Article  CAS  PubMed  Google Scholar 

  95. Schleithoff SS, Zittermann A, Tenderich G, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83(4):754–9.

    CAS  PubMed  Google Scholar 

  96. Jorde R, Sneve M, Torjesen PA, et al. No effect of supplementation with cholecalciferol on cytokines and markers of inflammation in overweight and obese subjects. Cytokine. 2010;50(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  97. Chen N, Wan Z, Han SF, et al. Effect of vitamin D supplementation on the level of circulating high-sensitivity C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients. 2014;6(6):2206–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Shab-Bidar S, Neyestani TR, Djazayery A, et al. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab Res Rev. 2012;28(5):424–30.

    Article  CAS  PubMed  Google Scholar 

  99. Norman AW, Frankel JB, Heldt AM, et al. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science. 1980;209(4458):823–5.

    Article  CAS  PubMed  Google Scholar 

  100. Cade C, Norman AW. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinology. 1986;119(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  101. Calle C, Maestro B, Garcia-Arencibia M. Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Mol Biol 2008; 9(65).

  102. Tai K, Need AG, Horowitz M, et al. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24(3):279–85.

    Article  CAS  PubMed  Google Scholar 

  103. Need AG, O'Loughlin PD, Horowitz M, et al. Relationship between fasting serum glucose, age, body mass index and serum 25 hydroxyvitamin D in postmenopausal women. Clin Endocrinol. 2005;62(6):738–41.

    Article  CAS  Google Scholar 

  104. Baynes KC, Boucher BJ, Feskens EJ, et al. Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia. 1997;40(3):344–7.

    Article  CAS  PubMed  Google Scholar 

  105. Chiu KC, Chu A, Go VLW, et al. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr. 2004;79(5):820–5.

    CAS  PubMed  Google Scholar 

  106. Grimnes G, Emaus N, Joakimsen RM, et al. Baseline serum 25-hydroxyvitamin D concentrations in the Tromso Study 1994–95 and risk of developing type 2 diabetes mellitus during 11 years of follow-up. Diabet Med. 2010;27(10):1107–15.

    Article  CAS  PubMed  Google Scholar 

  107. Thorand B, Zierer A, Huth C, et al. Effect of serum 25-hydroxyvitamin D on risk for type 2 diabetes may be partially mediated by subclinical inflammation: results from the MONICA/KORA Augsburg study. Diabetes Care. 2011;34(10):2320–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Jorde R, Figenschau Y. Supplementation with cholecalciferol does not improve glycaemic control in diabetic subjects with normal serum 25-hydroxyvitamin D levels. Eur J Nutr. 2009;48(6):349–54.

    Article  CAS  PubMed  Google Scholar 

  109. Kumar S, Davies M, Zakaria Y, et al. Improvement in glucose tolerance and beta-cell function in a patient with vitamin D deficiency during treatment with vitamin D. Postgrad Med J. 1994;70(824):440–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Gedik O, Akalin S. Effects of vitamin D deficiency and repletion on insulin and glucagon secretion in man. Diabetologia. 1986;29(3):142–5.

    Article  CAS  PubMed  Google Scholar 

  111. Nagpal J, Pande JN, Bhartia A. A double-blind, randomized, placebo-controlled trial of the short-term effect of vitamin D3 supplementation on insulin sensitivity in apparently healthy, middle-aged, centrally obese men. Diabet Med. 2009;26(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  112. Tai K, Need AG, Horowitz M, et al. Glucose tolerance and vitamin D: effects of treating vitamin D deficiency. Nutrition. 2008;24(10):950–6.

    Article  CAS  PubMed  Google Scholar 

  113. von Hurst PR, Stonehouse W, Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—a randomised, placebo-controlled trial. Br J Nutr. 2010;103(4):549–55.

    Article  CAS  Google Scholar 

  114. Harris SS, Pittas AG, Palermo NJ. A randomized, placebo-controlled trial of vitamin D supplementation to improve glycaemia in overweight and obese African Americans. Diabetes Obes Metab. 2012;14(9):789–94.

    Article  CAS  PubMed  Google Scholar 

  115. Breslavsky A, Frand J, Matas Z, et al. Effect of high doses of vitamin D on arterial properties, adiponectin, leptin and glucose homeostasis in type 2 diabetic patients. Clin Nutr. 2013;32(6):970–5.

    Article  CAS  PubMed  Google Scholar 

  116. Kendrick J, Targher G, Smits G, et al. 25-Hydroxyvitamin D deficiency is independently associated with cardiovascular disease in the Third National Health and Nutrition Examination Survey. Atherosclerosis. 2009;205(1):255–60.

    Article  CAS  PubMed  Google Scholar 

  117. Ponda MP, Huang X, Odeh MA, et al. Vitamin D may not improve lipid levels: a serial clinical laboratory data study. Circulation. 2012;126(3):270–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Forman JP, Curhan GC, Taylor EN. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension among young women. Hypertension. 2008;52(5):828–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Wang L, Manson JE, Buring JE, et al. Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension. 2008;51(4):1073–9.

    Article  CAS  PubMed  Google Scholar 

  120. Ertek S, Akgul E, Cicero AF, et al. 25-Hydroxy vitamin D levels and endothelial vasodilator function in normotensive women. Arch Med Sci. 2012;8(1):47–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Sigmund CD. Regulation of renin expression and blood pressure by vitamin D(3). J Clin Invest. 2002;110(2):155–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Lind L, Wengle B, Wide L, et al. Reduction of blood pressure during long-term treatment with active vitamin D (alphacalcidol) is dependent on plasma renin activity and calcium status. A double-blind, placebo-controlled study. Am J Hypertens. 1989;2(1):20–5.

    CAS  PubMed  Google Scholar 

  123. Pfeifer M, Begerow B, Minne HW, et al. Effects of a short-term vitamin D(3) and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. J Clin Endocrinol Metab. 2001;86(4):1633–7.

    CAS  PubMed  Google Scholar 

  124. Witham MD, Dove FJ, Dryburgh M, et al. The effect of different doses of vitamin D(3) on markers of vascular health in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2010;53(10):2112–9.

    Article  CAS  PubMed  Google Scholar 

  125. Vimaleswaran KS, Cavadino A, Berry DJ, et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2(9):719–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Beveridge LA, Struthers AD, Khan F, et al. Effect of vitamin D supplementation on blood pressure: a systematic review and meta-analysis incorporating individual patient data. JAMA Intern Med. 2015;175(5):745–54.

    Article  PubMed  Google Scholar 

  127. Jorde R, Grimnes G. Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Prog Lipid Res. 2011;50(4):303–12.

    Article  CAS  PubMed  Google Scholar 

  128. Cho HJ, Kang HC, Choi SA, et al. The possible role of Ca2+ on the activation of microsomal triglyceride transfer protein in rat hepatocytes. Biol Pharm Bull. 2005;28(8):1418–23.

    Article  CAS  PubMed  Google Scholar 

  129. Zemel MB, Shi H, Greer B, et al. Regulation of adiposity by dietary calcium. FASEB J. 2000;14(9):1132–8.

    CAS  PubMed  Google Scholar 

  130. Piccolo BD, Dolnikowski G, Seyoum E, et al. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults. Nutrients. 2013;5(9):3352–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Seida JC, Mitri J, Colmers IN, et al. Clinical review: effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(10):3551–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Beilfuss J, Berg V, Sneve M, et al. Effects of a 1-year supplementation with cholecalciferol on interleukin-6, tumor necrosis factor-alpha and insulin resistance in overweight and obese subjects. Cytokine. 2012;60(3):870–4.

    Article  CAS  PubMed  Google Scholar 

  133. Neyestani TR, Nikooyeh B, Alavi-Majd H, et al. Improvement of vitamin D status via daily intake of fortified yogurt drink either with or without extra calcium ameliorates systemic inflammatory biomarkers, including adipokines, in the subjects with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(6):2005–11.

    Article  CAS  PubMed  Google Scholar 

  134. Chandler PD, Scott JB, Drake BF, et al. Impact of vitamin D supplementation on inflammatory markers in African Americans: results of a four-arm, randomized, placebo-controlled trial. Cancer Prev Res (Phila). 2014;7(2):218–25.

    Article  CAS  Google Scholar 

  135. Duggan C, Tapsoba JD, Mason C, et al. Effect of vitamin D3 supplementation in combination with weight loss on inflammatory biomarkers in postmenopausal women: a randomized controlled trial. Cancer Prev Res (Phila). 2015. doi:10.1158/1940-6207.CAPR-14-0449:.

    Google Scholar 

  136. Wongwiwatthananukit S, Sansanayudh N, Phetkrajaysang N, et al. Effects of vitamin D(2) supplementation on insulin sensitivity and metabolic parameters in metabolic syndrome patients. J Endocrinol Investig. 2013;36(8):558–63.

    CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Louise Wamberg, Steen B. Pedersen, Lars Rejnmark, and Bjørn Richelsen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Wamberg.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wamberg, L., Pedersen, S.B., Rejnmark, L. et al. Causes of Vitamin D Deficiency and Effect of Vitamin D Supplementation on Metabolic Complications in Obesity: a Review. Curr Obes Rep 4, 429–440 (2015). https://doi.org/10.1007/s13679-015-0176-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-015-0176-5

Keywords

Navigation