Skip to main content
Log in

An Investigation into Deep Drawing Parameters on Deformation-Induced Martensitic Microstructure Transformation of an Austenitic Stainless Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Stainless steel is one of the most widely used engineering materials due to high strength and excellent corrosion resistance. In this paper, the deformation-induced martensitic behavior of austenitic stainless steel 304 was investigated by the finite element method. For this purpose, the process parameters of forming speed and punch corner radius were examined during the warm deep drawing process under gradient condition from room temperature to 300 °C for sheets with 1 mm thickness. Also, their effects were studied on deformation-induced martensitic transformation. To apply thermal gradient, the blank in flange region was heated by die heating, and the blank center has been cooled by water circulating punch for strength enhancement. Results showed that when the temperature was increased to 150 and 300 °C, the martensitic transformation stopped in wall and flange regions, and the maximum punch force decreased. In addition, the faster forming speed and the sharper punch corners transformed higher martensitic content especially in the punch corner regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Livitsanos, P. Thomson, The effect of temperature and deformation rate on transformation-dependent ductility of a metastable austenitic stainless steel. Mater. Sci. Eng. 30(2), 93–98 (1977)

    Article  CAS  Google Scholar 

  2. H. Takuda, K. Mori, T. Masachika, E. Yamazaki, Finite element analysis of the formability of an austenitic stainless steel sheet in warm deep drawing. J. Mater. Process. Technol. 143, 242–248 (2003)

    Article  Google Scholar 

  3. L. Gardner, The use of stainless steel in structures. Prog. Struct. Mater. Eng. 7(2), 45–55 (2005)

    Article  Google Scholar 

  4. E. Billur, S. Mahabunphachai, M. Koç, Formability of austenitic stainless steels under warm hydroforming conditions. Trans. NAMRI/SME 37, 341–348 (2009)

    Google Scholar 

  5. M. Streicher, J. Grubb, Austenitic and ferritic stainless steels, Third edn. (Uhlig’s Corrosion Handbook, London, 2011), pp. 657–693

    Google Scholar 

  6. D. Ludwigson, J.A. Berger, Plastic behaviour of metastable austenitic stainless steels. J Iron Steel Inst. 207(1), 63–69 (1969)

    CAS  Google Scholar 

  7. F. Schaller, T. Schmid, E. Snape, Delayed cracking of deep-drawn stainless steel. Sheet Metal Ind. 49(10), 621–624 (1972)

    CAS  Google Scholar 

  8. G. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation. Metall. Mater. Trans. A 6(4), 791–795 (1975)

    Article  Google Scholar 

  9. G.L. Huang, D.K. Matlock, G. Krauss, Martensite formation, strain rate sensitivity, and deformation behavior of type 304 stainless steel sheet. Metall. Trans. A 20(7), 1239–1246 (1989)

    Article  Google Scholar 

  10. K. Shinagawa, K. Mori, K. Osakada, Finite element simulation of deep drawing of stainless steel sheet with deformation-induced transformation. J. Mater. Process. Technol. 27(1), 301–310 (1991)

    Article  Google Scholar 

  11. R. Stringfellow, D. Parks, G. Olson, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall. Mater. 40(7), 1703–1716 (1992)

    Article  CAS  Google Scholar 

  12. T. Iwamoto, T. Tsuta, Y. Tomita, Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modelling of transformation kinetics. Int. J. Mech. Sci. 40(2–3), 173–182 (1998)

    Article  Google Scholar 

  13. H. Hamasaki, E. Ishimaru, F. Yoshida, Cyclic stress–strain response and martensitic transformation behavior for type 304 stainless steel. Appl. Mech. Mater. 510, 114 (2014)

    Article  CAS  Google Scholar 

  14. E. Ishimaru, H. Hamasaki, F. Yoshida, Deformation-induced martensitic transformation behavior of type 304 stainless steel sheet in draw-bending process. J. Mater. Process. Technol. 223, 34–38 (2015)

    Article  CAS  Google Scholar 

  15. L. Jayahari, B. Balunaik, A. Gupta, S. Singh, Finite element simulation studies of AISI 304 for deep drawing at various temperatures. Mater. Today Proc. 2(4–5), 1978–1986 (2015)

    Article  Google Scholar 

  16. G. Ambrogio, L. Filice, G. Palumbo, S. Pinto, Prediction of formability extension in deep drawing when superimposing a thermal gradient. J. Mater. Process. Technol. 162, 454–460 (2005)

    Article  Google Scholar 

  17. G. Palumbo, D. Sorgente, L. Tricarico, S. Zhang, Numerical and experimental investigations on the effect of the heating strategy and the punch speed on the warm deep drawing of magnesium alloy AZ31. J. Mater. Process. Technol. 191(1), 342–346 (2007)

    Article  CAS  Google Scholar 

  18. S. Yoshihara, H. Yamamoto, K. Manabe, Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique. J. Mater. Process. Technol. 143, 612–615 (2003)

    Article  Google Scholar 

  19. K. Lange, Handbook of Metal Forming (McGraw-Hill Book Company, New York, 1985), p. 1216

    Google Scholar 

  20. S. Singh, K. Mahesh, A. Kumar, M. Swathi, Understanding formability of extra-deep drawing steel at elevated temperature using finite element simulation. Mater. Des. 31(9), 4478–4484 (2010)

    Article  CAS  Google Scholar 

  21. K. Shinagawa, H. Nishikawa, T. Ishikawa, Y. Hosoi, Deformation-induced martensitic transformation in type 304 stainless steel during cold upsetting. Tetsu-to-Hagané 76(3), 462–468 (1990)

    Article  CAS  Google Scholar 

  22. H. Sumitomo, M. Arakawa, T. Sawatani, T. Ohoka, Delayed cracking of deep-drawn cup of marastable austenitic stainless steel. J. Jpn. Soc. Technol. Plast. SOSEI-TO-KAKO 17–11, 891 (1976)

    Google Scholar 

  23. M.R. da Rocha, C.A.S. de Oliveira, Evaluation of the martensitic transformations in austenitic stainless steels. Mater. Sci. Eng. A 517(1), 281–285 (2009)

    Article  Google Scholar 

  24. A. Lebedev, V. Kosarchuk, Influence of phase transformations on the mechanical properties of austenitic stainless steels. Int. J. Plast. 16(7), 749–767 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Khamedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinia, S., Khamedi, R. & Ahmadi, I. An Investigation into Deep Drawing Parameters on Deformation-Induced Martensitic Microstructure Transformation of an Austenitic Stainless Steel. Metallogr. Microstruct. Anal. 7, 724–734 (2018). https://doi.org/10.1007/s13632-018-0494-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0494-6

Keywords

Navigation