Skip to main content
Log in

Hidden Extreme Multistability in a Novel No-Equilibrium Fractional-Order Chaotic System and Its Synchronization Control

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Chaotic systems with hidden attractors have received widespread attention recently. In this paper, we construct a new four-dimensional fractional-order chaotic system by adding a further variable in a 3D chaotic system. This newly presented system has no equilibrium points, which reveals that the attractors produced by this system are all hidden. The intricate hidden dynamic properties are investigated by adopting nonlinear dynamical analysis tools such as phase diagrams, bifurcation diagrams, Lyapunov exponents, and chaos diagrams. In particular, the coexisting hidden attractors and extreme multistability are also observed in the system. Furthermore, the electronic circuit of this chaotic system is designed and the corresponding hardware circuit experiment is also achieved. Finally, based on the theory of fractional finite time stability theorem, a suitable finite time synchronization controller is designed. Numerical simulations are provided to verify the effectiveness of the proposed synchronization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B.B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman (1982)

  2. R. Hilfer, Applications of fractional calculus in physics. World Sci. (2000). https://doi.org/10.1142/3779

    Book  Google Scholar 

  3. A. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10, 40–50 (2010). https://doi.org/10.1109/MCAS.2010.938637

    Article  Google Scholar 

  4. B. Maundy, A. Elwakil, S. Gift, On a multivibrator that employs a fractional capacitor. Analog Integr. Circ. Sig. Process 62, 99–103 (2010). https://doi.org/10.1007/s10470-009-9329-3

    Article  Google Scholar 

  5. R.E. Gutiérrez, J.M. Rosário, J. Tenreiro Machado, Fractional order calculus: basic concepts and engineering applications. Math. Probl. Eng. 2010, 1–19 (2010). https://doi.org/10.1155/2010/375858

    Article  MATH  Google Scholar 

  6. B. Wang, J. Jian, H. Yu, Adaptive synchronization of fractional-order memristor-based Chua’s system. Syst. Sci. Control Eng. 2, 291–296 (2014). https://doi.org/10.1080/21642583.2014.900656

    Article  Google Scholar 

  7. D. Cafagna, G. Grassi, Fractional-order Chua’s circuit: time-domain analysis, bifurcation, chaotic behavior and test for chaos. Int. J. Bifurc. Chaos. 18, 615–639 (2008). https://doi.org/10.1142/S0218127408020550

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Li, G. Chen, Chaos in the fractional order Chen system and its control. Chaos, Solitons Fractals 22, 549–554 (2004). https://doi.org/10.1016/j.chaos.2004.02.035

    Article  ADS  MATH  Google Scholar 

  9. I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 34101 (2003). https://doi.org/10.1103/PhysRevLett.91.034101

    Article  ADS  Google Scholar 

  10. Y. Yu, H.-X. Li, S. Wang, J. Yu, Dynamic analysis of a fractional-order Lorenz chaotic system☆. Chaos, Solitons Fractals 42, 1181–1189 (2009). https://doi.org/10.1016/j.chaos.2009.03.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. V.K. Yadav, S. Das, B.S. Bhadauria, A.K. Singh, M. Srivastava, Stability analysis, chaos control of a fractional order chaotic chemical reactor system and its function projective synchronization with parametric uncertainties. Chin. J. Phys. 55, 594–605 (2017). https://doi.org/10.1016/j.cjph.2017.03.016

    Article  Google Scholar 

  12. X. Zhang, Z. Li, D. Chang, Dynamics, circuit implementation and synchronization of a new three-dimensional fractional-order chaotic system. AEU - Int. J. Electron. Commun. 82, 435–445 (2017). https://doi.org/10.1016/J.AEUE.2017.10.020

    Article  Google Scholar 

  13. D. Chen, C. Liu, C. Wu, Y. Liu, X. Ma, Y. You, A new fractional-order chaotic system and its synchronization with circuit simulation. Circuits, Syst. Signal Process 31, 1599–1613 (2012). https://doi.org/10.1007/s00034-012-9408-z

    Article  MathSciNet  Google Scholar 

  14. P. Zhou, K. Huang, A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 19, 2005–2011 (2014). https://doi.org/10.1016/j.cnsns.2013.10.024

    Article  ADS  Google Scholar 

  15. H. Li, X. Liao, M. Luo, A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 68, 137–149 (2012). https://doi.org/10.1007/s11071-011-0210-4

    Article  MathSciNet  MATH  Google Scholar 

  16. V.-T. Pham, S.T. Kingni, C. Volos, S. Jafari, T. Kapitaniak, A simple three-dimensional fractional-order chaotic system without equilibrium: dynamics, circuitry implementation, chaos control and synchronization. AEU - Int. J. Electron. Commun. 78, 220–227 (2017). https://doi.org/10.1016/j.aeue.2017.04.012

    Article  Google Scholar 

  17. S. Zhang, Y. Zeng, Z. Li, M. Wang, L. Xiong, Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability. Chaos An Interdiscip. J. Nonlinear Sci. 28, 13113 (2018). https://doi.org/10.1063/1.5006214

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Wang, G. Chen, A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17, 1264–1272 (2012). https://doi.org/10.1016/j.cnsns.2011.07.017

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Li, J.C. Sprott, W. Thio, Bistability in a hyperchaotic system with a line equilibrium. J. Exp. Theor. Phys. 118, 494–500 (2014). https://doi.org/10.1134/S1063776114030121

    Article  ADS  Google Scholar 

  20. S. Jafari, J.C. Sprott, F. Nazarimehr, Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 224, 1469–1476 (2015). https://doi.org/10.1140/epjst/e2015-02472-1

    Article  Google Scholar 

  21. D. Cafagna, G. Grassi, Elegant chaos in fractional-order system without equilibria. Math. Probl. Eng. 2013, 1–7 (2013). https://doi.org/10.1155/2013/380436

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Li, J.C. Sprott, Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos. 24, 1450034 (2014). https://doi.org/10.1142/S0218127414500345

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Zhang, Y. Zeng, Z. Li, One to four-wing chaotic attractors coined from a novel 3D fractional-order chaotic system with complex dynamics. Chin. J. Phys. 56, 793–806 (2018). https://doi.org/10.1016/J.CJPH.2018.03.002

    Article  Google Scholar 

  24. V.-T. Pham, C. Volos, S. Jafari, T. Kapitaniak, Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 87, 2001–2010 (2017). https://doi.org/10.1007/s11071-016-3170-x

    Article  Google Scholar 

  25. Zhou, C. , Li, Z. , Zeng, Y. , S. Zhang, A novel 3d fractional-order chaotic system with multifarious coexisting attractors. Int. J. Bifurc. Chaos. 29.1 (2019). https://doi.org/10.1142/S0218127419500044

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Kaslik, S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32(1), 245–256 (2012). https://doi.org/10.1016/j.neunet.2012.02.030

    Article  MATH  Google Scholar 

  27. M.P. Jesus, S.Z. Ernesto, V. Christos, et al., A new fractional-order chaotic system with different families of hidden and self-excited attractors. Entropy 20(8), 564 (2018). https://doi.org/10.3390/e20080564

    Article  Google Scholar 

  28. C. Zhou, Z. Li, F. Xie, Coexisting attractors, crisis route to chaos in a novel 4d fractional-order system and variable-order circuit implementation. Eur. Phys. J. Plus 134.2 (2019). https://doi.org/10.1140/epjp/i2019-12434-4

  29. B.C. Bao, M. Chen, H. Bao, Extreme multistability in a memristive circuit. Electron. Lett. 52(12), 1008–1010 (2016). https://doi.org/10.1049/el.2016.0563

    Article  Google Scholar 

  30. P. Brzeski, E. Pavlovskaia, T. Kapitaniak, P. Perlikowski, Controlling multistability in coupled systems with soft impacts. Int. J. Mech. Sci. 127, 118–129 (2016). https://doi.org/10.1016/j.ijmecsci.2016.12.022

    Article  Google Scholar 

  31. V.E. Tarasov, Fractional Dynamics (Springer, Berlin Heidelberg, 2010)

    Book  Google Scholar 

  32. Z. Xin, C.-H. Wang, X.R. Guo, A new grid multi-wing chaotic system and its... Acta Phys. Sin. 61, 200506–379 (2012). https://doi.org/10.7498/aps.61.200506

  33. J.-S. Duan, R. Rach, D. Baleanu, A.-M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations. Commun. Frac. Calc. 3, 73–99 (2012). https://doi.org/10.1016/j.chaos.2016.11.016

    Article  Google Scholar 

  34. C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series. (2002). https://doi.org/10.1103/physrevlett.88.174102

  35. W. Chen, J. Zhuang, W. Yu, Z. Wang, Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31, 61–68 (2009). https://doi.org/10.1016/j.medengphy.2008.04.005

    Article  Google Scholar 

  36. L. Zhang, K. Sun, S. He, H. Wang, Y. Xu, Solution and dynamics of a fractional-order 5-D hyperchaotic system with four wings. Eur. Phys. J. Plus. 132, 31 (2017). https://doi.org/10.1140/epjp/i2017-11310-7

    Article  ADS  Google Scholar 

  37. W.M. Ahmad, J.C. Sprott, Chaos in fractional-order autonomous nonlinear systems. Chaos, Solitons Fractals 16, 339–351 (2003). https://doi.org/10.1016/S0960-0779(02)00438-1

    Article  ADS  MATH  Google Scholar 

  38. W.H. Deng, C.P. Li, Chaos synchronization of the fractional Lü system. Phys. Stat. Mech. Appl. 353(none), 61–72 (2005). https://doi.org/10.1016/j.physa.2005.01.021

    Article  Google Scholar 

  39. Y. Yu, H. Li, The synchronization of fractional-order Rossler hyperchaotic systems. Phys. A 387, 1393–1403 (2008). https://doi.org/10.1016/j.physa.2007.10.052

    Article  MathSciNet  Google Scholar 

  40. L. Zhao, J. Hu, Liu, Adaptive tracking control and synchronization of fractional order hyperchaotic Lorenz system with unknown parameters. J. Phys. 59(04), 2305–2309 (2010). https://doi.org/10.7498/aps.60.100507

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers and the editor for their helpful comments on the manuscript of this paper.

Funding

The authors received funding from the National Natural Science Foundation of China (Grant Nos. 61176032 and 61471310) and the Natural Science Foundation of Hunan Province (Grant Nos.2015JJ2142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Li, Z., Zhang, X. et al. Hidden Extreme Multistability in a Novel No-Equilibrium Fractional-Order Chaotic System and Its Synchronization Control. Braz J Phys 49, 846–858 (2019). https://doi.org/10.1007/s13538-019-00705-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00705-1

Keywords

Navigation