Skip to main content
Log in

Elementary Concepts and Fundamental Laws of the Theory of Heat

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The elementary concepts and fundamental laws concerning the science of heat are examined from the point of view of its development with special attention to its theoretical structure. The development is divided into four periods, each one characterized by the concept that was attributed to heat. The transition from one to the next period was marked by the emergence of new concepts and new laws, and by singular events. We point out that thermodynamics, as it emerged, is founded on the elementary concepts of temperature and adiabatic wall, and on the fundamental laws: Mayer-Joule principle, or law of conservation of energy; Carnot principle, which leads to the definition of entropy; and the Clausius principle, or law of increase in entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A conservative force allows us to define potential energy and to demonstrate the law conservation of energy.

  2. Nowadays, the word “thermoscope” names a thermometer without a scale [10]. Tisza calls the air thermoscope a “barothermoscope” [13].

  3. In fact, the derivation of macroscopic laws from microscopic laws was the aim of the kinetic theory advanced by Clausius, Maxwell, and others.

References

  1. L. Russo, The Forgotten Revolution (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  2. N.R. Campbell, Physics: the Elements (Cambridge University Press, Cambridge, 1920)

    Google Scholar 

  3. C.G. Hempel, Fundamentals of Concept Formation in Empirical Science (University of Chicago Press, Chicago, 1952)

    Google Scholar 

  4. R. Carnap, The methodological character of theoretical concepts. Minnesota Studies in the Philosophy of Science, ed. by H. Feigl, M. Scriven, Vol. 1 (University of Minnesota Press, Minneapolis, 1956), pp. 38–76

  5. C.G. Hempel, Philosophy of Natural Science (Prentice Hall, Englewood Cliffs, 1966)

    Google Scholar 

  6. H. Feigl, The ’orthodox’ view of theories: remarks in defense as well as critique. Minnesota Studies in the Philosophy of Science, ed. by M. Radner, S. Winokur, Vol. 4 (University of Minnesota Press, Minneapolis, 1970), pp. 3–16

  7. C.G. Hempel, On the ’standard conception’ of scientific theories. Minnesota Studies in the Philosophy of Science, ed. by M. Radner, S. Winokur, Vol. 4 (University of Minnesota Press, Minneapolis, 1970), pp. 142–163

  8. R. Carnap, An Introduction to the Philosophy of Science (Basic Books, New York, 1984)

    Google Scholar 

  9. F.S. Taylor, The origin of the thermometer. Ann. Sci. 5, 129–156 (1942)

    Article  Google Scholar 

  10. W.E.K. Middleton. A History of the Thermometer and Its Use in Meteorology (Johns Hopkins Press, Baltimore, 1966)

    Google Scholar 

  11. Letter of Benedetto Castelli to Ferdinando Cesarini, Dated 20 september 1638, in Le Opere di Galileo Galilei Edizione Nazionale. Firenze. 17, 377–380 (1906)

    Google Scholar 

  12. H Van Etten, [pseudonym of Jean Leurechon]. Récréation Mathématique, Pont-a-Mousson (1626)

  13. L. Tisza, Generalized Thermodynamics (MIT Press, Cambridge, 1966)

    MATH  Google Scholar 

  14. Scala graduum caloris, Calorum Descriptiones & signa. Philos. Trans. 824–829 (1701). Anonimous publication by I. Newton

  15. D.G. Fahrenheit, Experimenta et observationes de congelatione aquae in vacuo factae. Phil. Trans. 33, 78–84 (1724)

    Article  Google Scholar 

  16. E. Mach, Principles of the Theory of Heat (Reidel, Dordrecht, 1986). Translated from the second German edition of 1900

    Book  Google Scholar 

  17. D. Mckie, N.H.V. de Heathcote. The Discovery of Specific and Latent Heats (Arnold, London, 1935)

    Google Scholar 

  18. H. Boerhaave, A New Method of Chemistry (Longman, London, 1753). Translated from the original latin of 1732

    Google Scholar 

  19. An enquiry into the General Effects of Heat, with Observations on the Theories of Mixtures. Nourse, London, 1770. Anonimous publication

  20. J. Black, Lectures on the Elements of Chemistry, ed. J. Robinson (Edinburgh, 1803)

  21. P Shaw, The Philosophical Works of the Honorable Robert Boyle (Innys, London, 1725), p. 125 and 378

    Google Scholar 

  22. A.L. Lavoisier et P.S. Laplace, Mémoire sur la chaleur. Mé,moire de l’Académie Royal des Sciences, (année, 1780), pp. 355–408

  23. G. de Morveau, A.L. Lavoisier, C.L. Berthollet et A.F. de Fourcroy, Méthode de Nomenclature Chimique (Cuchet, Paris, 1787)

  24. AL Lavoisier, Traité Elémentaire de Chimique (Paris, 1789)

  25. R. Fox, The Caloric Theory of Gases (Clarendon Press, Oxford, 1971)

    Google Scholar 

  26. R.J. Haüy, Traité Élémentaire de Physique (Courcier, Paris, 1806). Tome 1, seconde édition

    Google Scholar 

  27. E Darwin, Frigorific experiments on the mechanical expansion of air. Phil. Trans. R. Soc. 78, 43–52 (1788)

    Article  Google Scholar 

  28. J.B. Biot, Sur la théorie du son. J. Phys. 55, 173–182 (1802)

    Google Scholar 

  29. B.S. Finn, Laplace and the speed of sound. Isis. 55, 7–19 (1964)

    Article  MATH  Google Scholar 

  30. W.J.M. Rankine, On the thermo-dynamic theory of steam- engines with dry saturated steam, and its application to practice. Philos. Trans. R. Soc. 149, 177–192 (1859)

    Article  Google Scholar 

  31. S.D. Poisson, Théorie Mathématique de la Chaleur (Bachelier, Paris, 1835)

    Google Scholar 

  32. S.G. Brush, Statistical Physics and the Atomic Theory of Matter from Boyle and Newton to Landau and Onsager (Princeton University Press, Princeton, 1983)

    Google Scholar 

  33. J.L. Gay-Lussac, Recherches sur la dilatation des gaz et de vapeurs. Annales de Chimie. 43, 137–175 (1802)

    Google Scholar 

  34. F. Delaroche et J.-E. Bérard, Mémoire sur la détermination de la chaleur spécifique des différens gaz. Annales de Chimie 85, 72–110, 113–182 (1813)

  35. A.T. Petit et P.L. Dulong, Sur quelques points importans de la théorie de chaleur. Annales de Chimie et de Physique 10, 395–413 (1819)

  36. S.D. Poisson, Mémoire sur la théorie du son. J. de L’É,cole Polytechnique. 7, 319–392 (1808)

    Google Scholar 

  37. P.S. Laplace, Sur la vitesse du son dans l’air et dans l’eau. Annales de Chimie et de Physique. 3, 238–241 (1816)

    Google Scholar 

  38. P.S. Laplace, Développement de la théorie des fluides élastiques, application de cette théorie a la vitesse du son. Connaissance des Temps ou des Mouvements Célestes à l’Usage des Astronomes et des Navigateurs, pour l’an. 1825, 219–227, 302–323 (1822)

    Google Scholar 

  39. P.S. Laplace, Sur la vitesse du son. Annales de Chimie et de Physique. 20, 266–268 (1822)

    Google Scholar 

  40. P.L. Dulong, Recherche sur la chaleur spécifique des fluides élastiques. Annales de Chimie et de Physique. 41, 113–159 (1829)

    Google Scholar 

  41. S.D. Poisson, Sur la vitesse du son. Connaissance des Temps ou des Mouvements Célestes à l’Usage des Astronomes et des Navigateurs, pour l’an 1826, 257–277 (1823)

  42. S. Carnot, Réflexions sur la Puissance Motrice du Feu et sur les Machines propes à Developper cette Puissance (Bachelier, Paris, 1824)

    MATH  Google Scholar 

  43. E. Clapeyron, Mémoire sur la puissance motrice de la chaleur. Journal de l’École Royale Polytechnique. 14, 153–190 (1834)

    Google Scholar 

  44. G. Coriolis, Du Calcul de l’Effet des Machines, ou Considérations sur l’Emploi des Moteurs et sur leur Évaluation (Carilian-Goeury, Paris, 1826)

    Google Scholar 

  45. W. Thomson, On an absolute thermodynamic scale, founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations. Philos. Mag. 33, 313–317 (1848)

    Google Scholar 

  46. R. Clausius, Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik und Chemie. 79, 368–397, 500–524 (1850)

    Article  ADS  Google Scholar 

  47. W. Thomson, An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments on steam. Trans. Edin. R. Soc. 16, 541–574 (1849)

    Article  Google Scholar 

  48. J.R. Mayer, Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie. 42, 233–240 (1842)

    Article  Google Scholar 

  49. J.R. Mayer, Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel, Ein Beitrag zur Naturkunde (Drechsler, Heilbronn, 1845)

    Google Scholar 

  50. J.P. Joule, On the calorific effects of magneto-electricity, and on the mechanical value of heat. Philos. Mag. 23, 263–276, 347–355, 435–443 (1843)

    Google Scholar 

  51. J.P. Joule, On the mechanical equivalent of heat. Philos. Trans. R. Soc. 140, 61–82 (1850)

    Article  Google Scholar 

  52. J.P. Joule, On the changes of temperature produced by the rarefaction and condensation of air. Philos. Mag. 26, 369–383 (1845)

    Google Scholar 

  53. R. Clausius, Über eine veränderte Form des zweiten Hauptsatzes des mechanischen Wärmetheorie. Annalen der Physik und Chemie. 93, 481–506 (1854)

    Article  ADS  Google Scholar 

  54. W. Thomson, On the dynamical theory of heat, with numerical results deduced from Mr. Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Trans. R. Soc. Edin. 20, 261–288 (1853). Read 17th March 1851

    Article  Google Scholar 

  55. T.S. Kuhn, Energy conservation as an example of simultaneous discovery. Critical Problems in the History of Science, ed. by M. Clagett (University of Wiconsin Press, Madison, 1969), pp. 321–356

  56. H. Helmholtz, Über die Erhaltung der Kraft (Reimer, Berlin, 1847)

    MATH  Google Scholar 

  57. W. Thomson, On the dynamical theory of heat. Part V. On the quantities of mechanical energy contained in fluid in different states, as to temperature and density. Trans. R. Soc. Edin. 20, 475–482 (1853). Read December 15, 1851

    Article  Google Scholar 

  58. R. Clausius, Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik und Chemie. 125, 353–400 (1865)

    Article  ADS  Google Scholar 

  59. R. Clausius, Ueber die Anwendung des Satzes von der Aequivalenz der Verwandlungen auf die innere Arbeit. Annalen der Physik und Chemie. 116, 73–110 (1862)

    Article  ADS  Google Scholar 

  60. J.W. Gibbs, A method of geometrical representation of the thermodynamic properties of substances by means of surface. Trans. Connect. Acad. 2, 382–404 (Dec. 1873)

  61. W. Rankine, A Manual of the Steam Engine and Other Prime Movers (Griffin, London, 1859)

    Google Scholar 

  62. C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355–386 (1909)

    Article  MathSciNet  Google Scholar 

  63. M. Born, Kritische Betrachtungen zur traditionelle Darstellung der Thermodynamik. Physikalische Zeitschrift. 22, 218–224, 249–254, 282–286 (1921)

    Google Scholar 

  64. E. Fermi, Thermodynamics. Prentice Hall (1937)

  65. A.B. Pippard, The Elements of Classical Thermodynamics (Cambridge University Press, Cambridge, 1957)

    MATH  Google Scholar 

  66. H.B. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

  67. H.A. Buchdahl, The Concepts of Classical Thermodynamics (Cambridge University Press, Cambridge, 1966)

    MATH  Google Scholar 

  68. M.J. de Oliveira, Equilibrium Thermodynamics, 2nd edn. (Springer, Berlin, 2017)

    Book  MATH  Google Scholar 

  69. M. Planck, Vorlesungen über Thermodynamik (Veit, Leipzig, 1897)

    MATH  Google Scholar 

  70. M.W. Zemansky, Heat and Thermodynamics (McGraw-Hill, New York, 1937)

    MATH  Google Scholar 

  71. W. Pauli, Thermodynamik und kinetische Gastheorie, Verein der Mathematiker und Physiker an der E. T. H. Zürich (1952)

  72. A. Sommerfeld, Thermodynamics and Statistical Mechanics (Academic Press, New York, 1956)

    MATH  Google Scholar 

  73. T. Ehrenfest-Afanassjewa, Zur Axiomatisierung des zweiten Hauptsatzes der Thermodynamik. Zeitschrift für Physik. 33, 933–945 (1925)

    Article  ADS  MATH  Google Scholar 

  74. J.W. Gibbs, On the equilibrium of heterogeneous substances. Trans. Connect. Acad. 3 108–248. Oct. 1875-May 1876, 343–524 May 1877-July 1878

  75. L. Tisza, The thermodynamics of phase equilibrium. Ann. Phys. 13, 1–92 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. J.C. Maxwell, Theory of Heat, 4th edn. (Longmans, London, 1875)

    Google Scholar 

  77. W. Nernst, Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes (Knapp, Halle, 1918)

    MATH  Google Scholar 

  78. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  ADS  MATH  Google Scholar 

  79. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Thomas, Springfield, 1955)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário J. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.J. Elementary Concepts and Fundamental Laws of the Theory of Heat. Braz J Phys 48, 299–313 (2018). https://doi.org/10.1007/s13538-018-0563-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0563-y

Keywords

Navigation