Skip to main content
Log in

Two Dimensional Honeycomb Materials: Random Fields, Dissipation and Fluctuations

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we propose a method to describe the many-body problem of electrons in honeycomb materials via the introduction of random fields which are coupled to the electrons and have a Gaussian distribution. From a one-body approach to the problem, after integrating exactly the contribution of the random fields, one builds a non-hermitian and dissipative effective Hamiltonian with two-body interactions. Our approach introduces besides the usual average over the electron field a second average over the random fields. The interplay of two averages enables the definition of various types of Green’s functions which allow the investigation of fluctuation-dissipation characteristics of the interactions that are a manifestation of the many-body problem. In the current work, we study only the dissipative term, through the perturbative analysis of the dynamics associated the effective Hamiltonian generated by two different kinds of couplings. For the cases analyzed, the eigenstates of the effective Hamiltonian are complex and, therefore, some of the states have a finite life time. Moreover, we also investigate, in the mean field approximation, the most general parity conserving coupling to the random fields and compute the width of charge carriers Γ as a function of the Fermi energy E F . The theoretical prediction for Γ(E F ) is compared to the available experimental data for graphene. The good agreement between Γ t h e o and Γ e x p suggests that description of the many-body problem associated to the electrons in honeycomb materials can indeed be done via the introduction of random fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O. Oliveira, C. E. Cordeiro, A. Delfino, W. de Paula, T. Frederico, Phys. Rev. B. 83, 155419 (2011)

    Article  ADS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. N. M. R. Peres, Rev. Mod. Phys. 82, 2673 (2010)

    Article  ADS  Google Scholar 

  4. S. Adam, E. H. Hwang, E. Rossi, S. Das Sarma, Solid State Commun. 149, 1072 (2009)

    Article  ADS  Google Scholar 

  5. M. A. H. Vozmediano, M. I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. P. T. Araujo, M. Terrones, S.M Dresselhaus, Mater. Today. 15, 98 (2012)

    Article  Google Scholar 

  7. A. J. Chaves, T. Frederico, O. Oliveira, W. de Paula, M. C. Santos, J Phys. Condensed Matter. 26, 185301 (2014)

    Article  Google Scholar 

  8. W de Paula, A. J. Chaves, O. Oliveira, T. Frederico, Few-Body Syst. 56, 915 (2015)

    Article  ADS  Google Scholar 

  9. C. Popovici, C. S. Fischer, L. von Smekal, Phys. Rev. B. 88, 205429 (2013)

    Article  ADS  Google Scholar 

  10. K. A. Efetov, Adv. Phys. 32, 53 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. S. Hussein, V. Kharchenko, L.F. Canto, R. Donangelo, Ann. Phys. 284, 178 (2000)

    Article  ADS  Google Scholar 

  12. A. De Pace, A. Molinari, H.A. Weidenmller, Ann. Phys. 322, 2446 (2007)

    Article  ADS  Google Scholar 

  13. V. Gornyi, V. Yu. Kachorovskii, A. D. Mirlin, Phys. Rev. B. 92, 155428 (2015)

    Article  ADS  Google Scholar 

  14. E. V. Shuryak, J.J.M. Verbaarschot, Nucl. Phys. A. 560, 306 (1993)

    Article  ADS  Google Scholar 

  15. T. Ericson, T. Mayer-Kuckuk, Annu. Rev. Nucl. Sci. 16, 183 (1966)

    Article  ADS  Google Scholar 

  16. J. J. M. Verbaarschot, H. A. Weidenmuller, M. R. Zirnbauer, Phys. Rep. 129, 367 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Dyson, J. Math. Phys. 3, 140 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. A. Lee, T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  19. C. W. J. Beenakker, Rev. Mod. Phys. 87, 1037 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Amanatidis, S. N. Evangelou, Phys. Rev. B. 79, 205420 (2009)

    Article  ADS  Google Scholar 

  21. R. Burgos, J. Warnes, L. R. F. Lima, C. Lewenkoft, Phys. Rev. B. 91, 115403 (2015)

    Article  ADS  Google Scholar 

  22. O. Oliveira, W. de Paula, T. Frederico, M. S. Hussein, Braz. J. Phys. 46, 384 (2016)

    Article  ADS  Google Scholar 

  23. P. H. Roberts, N.G. Berloff, in Nonlinear Schrodinger equation as a model of superfluid helium. Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, ed. by C. F. Barenghi, R. J. Donnelly, W. F. Vinen, Vol. 571 (Springer-Verlag, 2001)

  24. K. F. Mak, F. H. da Jornada, K. He, J. Deslippe, N. Petrone, J. Hone, J. Shan, S. G. Louie, T. F. Heinz, Vol. 112. (2014), p. 207401

  25. C. Popovici, O. Oliveira, W. de Paula, T. Frederico, Phys. Rev. B. 85, 235424 (2012)

    Article  ADS  Google Scholar 

  26. C. E. Cordeiro, A. Delfino, T. Frederico, O. Oliveira, W. de Paula, Phys. Rev. B. 87, 045429 (2013)

    Article  ADS  Google Scholar 

  27. A. De Pace, A. Molinari, H. A. Weidenmuler, Ann. Phys. (N.Y.) 322, 2446 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). OO acknowledges financial support from grant 2014/08388-0 from São Paulo Research Foundation (FAPESP). MSH acknowledges a CAPES/ITA PVS Fellowship, CEPID/FAPESP, and INCT/CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. de Paula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederico, T., Oliveira, O., de Paula, W. et al. Two Dimensional Honeycomb Materials: Random Fields, Dissipation and Fluctuations. Braz J Phys 47, 9–18 (2017). https://doi.org/10.1007/s13538-016-0467-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0467-7

Keywords

Navigation