Skip to main content
Log in

Zinc chloride modified electronic transport and relaxation studies in barium-tellurite glasses

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The ac conductivity of halide based tellurium glasses having composition 70 TeO2-(30-x) BaO-x ZnCl2; x = 5, 10, 15, 20 and 25 has been investigated in the frequency range 10-1 Hz to 105Hz and in the temperature range 453 K to 553 K. The frequency and temperature dependent ac conductivity show mixed behaviour with increase in halide content and found to obey Jonscher’s universal power law. The values of dc conductivity, crossover frequency and frequency exponent have been estimated from the fitting of experimental data of ac conductivity with Jonscher’s universal power law. For determining the conduction mechanism in studied glass system, frequency exponent has been analyzed by various theoretical models. In presently studied glasses, the ac conduction takes place via overlapping large polaron tunneling (OLPT). The values of activation energy for dc conduction (W) and the one associated with relaxation process (E R) are found to increase with increase in x up to glass sample with x = 15 and thereafter it decrease with increase in zinc chloride content. DC conduction takes place via variable range hopping (VRH) as proposed by Mott with some modification suggested by Punia et al. The value of real part of modulus (M') is observed to decrease with increase in temperature. The value of stretched exponent (β) obtained from fitting of M'' reveals the presence of non-Debye type of relaxation in presently studied glass samples. Scaling spectra of ac conductivity and values of electric modulus (M' and M'') collapse into a single master curve for all the compositions and temperatures. The values of relaxation energy (E R) for all the studied glass compositions are almost equal to W, suggesting that polarons have to overcome same barrier while relaxing and conducting. The conduction and relaxation processes in the studied glass samples are composition and temperature independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Kundu, Sunil Dhankhar, R. Punia, Kirti Nanda, and N. Kishore, J. Alloy. Compd. 587, 66 (2014).

    Article  Google Scholar 

  2. J. E Stanworth, Nature 169, 581 (1952).

    Article  Google Scholar 

  3. R. El-Mallawany, Mater. Chem. Phys. 53, 93 (1998).

    Article  Google Scholar 

  4. H. Nasu, T. Uchigaki, K. Kamiya, and H. Kanbara, Jpn. J. Appl. Phys. 31, 3899 (1992).

    Article  Google Scholar 

  5. R. S. Kundu, S. Dhankhar, R. Punia, S. Sharma, and N. Kishore, Trans. Indian Ceram. Soc. 72, 1 (2013).

    Article  Google Scholar 

  6. L. E. Gorre and R. C. Pastor, Mater. Res. Bull. 18, 1391 (1983).

    Article  Google Scholar 

  7. G. Wang, J. Zhang, S. Dai, J. Yang, and Z. Jiang, Phys. Lett. A 341, 285 (2005).

    Article  Google Scholar 

  8. R. Jose, T. Suzuki, and Y. Ohishi, J. Non-Cryst. Solids 352, 5564 (2006).

    Article  Google Scholar 

  9. I. Ivanova, J. Mater. Sci. 25, 2087 (1990).

    Article  Google Scholar 

  10. T. K. Bansal and R. G. Mendiratta, Phys. Chem. Glasses 28, 242 (1987).

    Google Scholar 

  11. S. Dhankhar, R. S. Kundu, R. Parmar, S. Murugavel, R. Punia, and N. Kishore, Solid State Sci. 48, 230 (2015).

    Article  Google Scholar 

  12. J. C. Sabadel, P. Armand, and P. Baldeck, J. Solid State Chem. 132, 411 (1997).

    Article  Google Scholar 

  13. C. V. Reddy, Y. N. Ahmed, R. R. Reddy, and T. V. R. Rao, J. Phys. Chem. Solids 159, 137 (1998).

    Google Scholar 

  14. G. EI-Damrawi and S. Abd-EI-Maksoud, Phys. Chem. Glasses 41, 6 (2000).

    Google Scholar 

  15. R. N. Hampton, W. Hong, and G. A. Saunders, J. Non-Cryst. Solids 94, 307 (1987).

    Article  Google Scholar 

  16. S. Inque, A. Nukui, and K. Yamamoto, Appl. Opt. 37, 48 (1998).

    Article  Google Scholar 

  17. M. M. EI-Samanoudy, J. Mater. Sci. 30, 3919 (1995).

    Article  Google Scholar 

  18. D. K. Durga and N. Veeraiah, B. Mater. Sci. 24, 421 (2001).

    Article  Google Scholar 

  19. R. Punia, R. S. Kundu, M. Dult, S. Murugavel, and N. Kishore, J. Appl. Phys. 112, 083701 (2012).

    Article  Google Scholar 

  20. S. Dahiya, R. Punia, S. Murugavel, and A. S. Maan, Indian J. Phys. 88 1169 (2014).

    Article  Google Scholar 

  21. A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics, London, UK (1983).

    Google Scholar 

  22. M. Dult, R. S. Kundu, S. Murugavel, R. Punia, and N. Kishore, Physica B 452, 102 (2014).

    Article  Google Scholar 

  23. R. Hill and A. Jonscher, J. Non-Cryst. Solids 32, 53 (1979).

    Article  Google Scholar 

  24. I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).

    Article  Google Scholar 

  25. S. R. Elliot, Adv. Phys. 36, 135 (1987).

    Article  Google Scholar 

  26. N. F. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press, Oxford, UK (1979).

    Google Scholar 

  27. A. R. Long, Adv. Phys. 31, 553 (1982).

    Article  Google Scholar 

  28. M. Dult, R. S. Kundu, J. Hooda, S. Murugavel, R. Punia, and N. Kishore, J. Non-Cryst. Solids 423, 1 (2015).

    Article  Google Scholar 

  29. M. M. Ahmed, E.-S. Yousef, and E.-S. Moustafa, Physica B 371, 74 (2006).

    Article  Google Scholar 

  30. M. Gabr, K. A. Ali, and A. G. El-Din Mostafa, Turk. J. Phys. 31, 31 (2007).

    Google Scholar 

  31. R. Punia, R. S. Kundu, S. Murugavel, and N. Kishore, J. Appl. Phys. 112, 113716 (2012).

    Article  Google Scholar 

  32. V. N. Bogomolov, E. K. Kudinev, and U. N. Firsov, Sov. Phys. Solid State 9, 2502 (1968).

    Google Scholar 

  33. N. F. Mott, Phil. Mag. 19, 835 (1969).

    Article  Google Scholar 

  34. L. Murawski, C. H. Chung, and J. D. Mackenzie, J. Non-Cryst. Solids 32, 91 (1979).

    Article  Google Scholar 

  35. V. Provenzano, L. P. Boesch, V. Volterra, C. T. Monynihan, and P. B. Mascedo, J. Am. Ceram. Soc. 55, 492 (1972).

    Article  Google Scholar 

  36. P. B. Macedo, C. T. Moynihan, and R. Bose, Phys. Chem. Glasses 13, 171 (1972).

    Google Scholar 

  37. B. Shanmugavelu and V. V. Ravi Kanth Kumar, Solid State Sci. 20, 59 (2013).

    Article  Google Scholar 

  38. C. T. Moynihan, L. P. Boesch, and N. L. Laberge, Phys. Chem. Glasses 14, 122 (1973).

    Google Scholar 

  39. R. Bergman, J. Appl. Phys. 88, 1356 (2000).

    Article  Google Scholar 

  40. N. Poonpandian and A. Narayanasamy, J. Appl. Phys. 92, 2770 (2002).

    Article  Google Scholar 

  41. S. Dahiya, R. Punia, A. Singh, Anup S. Maan, and S. Murugavel, J. Am. Ceram. Soc. 98, 2776 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Punia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhankhar, S., Kundu, R.S., Rani, S. et al. Zinc chloride modified electronic transport and relaxation studies in barium-tellurite glasses. Electron. Mater. Lett. 13, 412–419 (2017). https://doi.org/10.1007/s13391-017-6138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6138-1

Keywords

Navigation