Skip to main content

Advertisement

Log in

The application of RNAi-based treatments for inflammatory bowel disease

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is a chronic, relapsing, idiopathic inflammation of the gastrointestinal tract with no permanent cure. Present immunosuppressive and anti-inflammatory therapies are often ineffective and associated with severe side effects. An RNA interference (RNAi)-based approach in which small interfering RNA (siRNA) mediates specific downregulation of key molecular targets of the IBD inflammatory process may offer a precise, potent and safer alternative to conventional treatments. This review describes the aetiology of Crohn’s disease and ulcerative colitis and the cellular and molecular basis for current treatments to highlight target candidates for an RNAi-based approach. Promising preclinical studies support an RNAi application; however, optimal siRNA designs that maximise potency and development of enabling technologies for site- and cellular-specific delivery are prerequisites for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis E, Van Kemseke C, Reenaers C. Necessity of phenotypic classification of inflammatory bowel disease. Best Pract Res Clin Gastroenterol. 2011;25 Suppl 1:S2–7. doi:10.1016/s1521-6918(11)70003-8.

    Article  PubMed  Google Scholar 

  2. Vermeire S, Van Assche G, Rutgeerts P. Classification of inflammatory bowel disease: the old and the new. Curr Opin Gastroenterol. 2012;28(4):321–6. doi:10.1097/MOG.0b013e328354be1e.

    Article  PubMed  Google Scholar 

  3. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33. doi:10.1038/nri1132.

    Article  CAS  PubMed  Google Scholar 

  4. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347(6):417–29. doi:10.1056/NEJMra020831.

    Article  CAS  PubMed  Google Scholar 

  5. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Investig. 2007;117(3):514–21. doi:10.1172/jci30587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Collnot EM, Ali H, Lehr CM. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–46. doi:10.1016/j.jconrel.2012.01.028.

    Article  CAS  PubMed  Google Scholar 

  7. Trikudanathan G, Venkatesh PG, Navaneethan U. Diagnosis and therapeutic management of extra-intestinal manifestations of inflammatory bowel disease. Drugs. 2012;72(18):2333–49. doi:10.2165/11638120-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  8. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1785–94. doi:10.1053/j.gastro.2011.01.055.

    Article  PubMed  Google Scholar 

  9. Gersemann M, Stange EF, Wehkamp J. From intestinal stem cells to inflammatory bowel diseases. World J Gastroenterol. 2011;17(27):3198–203. doi:10.3748/wjg.v17.i27.3198.

    PubMed  PubMed Central  Google Scholar 

  10. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17. doi:10.1038/nature10209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Breese E, Braegger CP, Corrigan CJ, Walker-Smith JA, MacDonald TT. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993;78(1):127–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol (Baltimore, Md : 1950). 1996;157(3):1261–70.

    CAS  Google Scholar 

  13. Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am J Pathol. 1997;150(3):823–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52(1):65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuss IJ, Becker C, Yang Z, Groden C, Hornung RL, Heller F, et al. Both IL-12p70 and IL-23 are synthesized during active Crohn's disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm Bowel Dis. 2006;12(1):9–15.

    Article  PubMed  Google Scholar 

  16. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1756–67. doi:10.1053/j.gastro.2011.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Investig. 2004;113(10):1490–7. doi:10.1172/jci19836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saxon A, Shanahan F, Landers C, Ganz T, Targan S. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol. 1990;86(2):202–10.

    Article  CAS  PubMed  Google Scholar 

  19. Das KM, Dasgupta A, Mandal A, Geng X. Autoimmunity to cytoskeletal protein tropomyosin. A clue to the pathogenetic mechanism for ulcerative colitis. J Immunol (Baltimore, Md : 1950). 1993;150(6):2487–93.

    CAS  Google Scholar 

  20. Wehkamp J, Schwind B, Herrlinger KR, Baxmann S, Schmidt K, Duchrow M, et al. Innate immunity and colonic inflammation: enhanced expression of epithelial alpha-defensins. Dig Dis Sci. 2002;47(6):1349–55.

    Article  CAS  PubMed  Google Scholar 

  21. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10(10):735–44. doi:10.1038/nri2850.

    Article  CAS  PubMed  Google Scholar 

  22. Isaacs KL, Sartor RB. Treatment of inflammatory bowel disease with antibiotics. Gastroenterol Clin N Am. 2004;33(2):335–45. doi:10.1016/j.gtc.2004.02.006.

    Article  Google Scholar 

  23. Triantafillidis JK, Merikas E, Georgopoulos F. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther. 2011;5:185–210. doi:10.2147/DDDT.S11290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11. doi:10.1136/gut.2005.073817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141(1):227–36. doi:10.1053/j.gastro.2011.04.011.

    Article  PubMed  Google Scholar 

  26. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012;130(4):e794–803. doi:10.1542/peds.2011-3886.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sougioultzis S, Simeonidis S, Bhaskar KR, Chen X, Anton PM, Keates S, et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappaB-mediated IL-8 gene expression. Biochem Biophys Res Commun. 2006;343(1):69–76. doi:10.1016/j.bbrc.2006.02.080.

    Article  CAS  PubMed  Google Scholar 

  28. Lee SK, Kim YW, Chi SG, Joo YS, Kim HJ. The effect of Saccharomyces boulardii on human colon cells and inflammation in rats with trinitrobenzene sulfonic acid-induced colitis. Dig Dis Sci. 2009;54(2):255–63. doi:10.1007/s10620-008-0357-0.

    Article  CAS  PubMed  Google Scholar 

  29. Kho M, Cransberg K, Weimar W, van Gelder T. Current immunosuppressive treatment after kidney transplantation. Expert Opin Pharmacother. 2011;12(8):1217–31. doi:10.1517/14656566.2011.552428.

    Article  CAS  PubMed  Google Scholar 

  30. Satoh Y, Ishiguro Y, Sakuraba H, Kawaguchi S, Hiraga H, Fukuda S, et al. Cyclosporine regulates intestinal epithelial apoptosis via TGF-beta-related signaling. Am J Physiol Gastrointest Liver Physiol. 2009;297(3):G514–9. doi:10.1152/ajpgi.90608.2008.

    Article  CAS  PubMed  Google Scholar 

  31. Rogler G. Gastrointestinal and liver adverse effects of drugs used for treating IBD. Best Pract Res Clin Gastroenterol. 2010;24(2):157–65. doi:10.1016/j.bpg.2009.10.011.

    Article  CAS  PubMed  Google Scholar 

  32. Present DH, Meltzer SJ, Krumholz MP, Wolke A, Korelitz BI. 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med. 1989;111(8):641–9.

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen OH, Munck LK. Drug insight: aminosalicylates for the treatment of IBD. Nat Clin Pract Gastroenterol Hepatol. 2007;4(3):160–70. doi:10.1038/ncpgasthep0696.

    Article  CAS  PubMed  Google Scholar 

  34. Rhodes JM, Bartholomew TC, Jewell DP. Inhibition of leucocyte motility by drugs used in ulcerative colitis. Gut. 1981;22(8):642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stevens C, Lipman M, Fabry S, Moscovitch-Lopatin M, Almawi W, Keresztes S, et al. 5-Aminosalicylic acid abrogates T-cell proliferation by blocking interleukin-2 production in peripheral blood mononuclear cells. J Pharmacol Exp Ther. 1995;272(1):399–406.

    CAS  PubMed  Google Scholar 

  36. Mahida YR, Lamming CE, Gallagher A, Hawthorne AB, Hawkey CJ. 5-Aminosalicylic acid is a potent inhibitor of interleukin 1 beta production in organ culture of colonic biopsy specimens from patients with inflammatory bowel disease. Gut. 1991;32(1):50–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaiser GC, Yan F, Polk DB. Mesalamine blocks tumor necrosis factor growth inhibition and nuclear factor kappaB activation in mouse colonocytes. Gastroenterology. 1999;116(3):602–9.

    Article  CAS  PubMed  Google Scholar 

  38. Rousseaux C, Lefebvre B, Dubuquoy L, Lefebvre P, Romano O, Auwerx J, et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med. 2005;201(8):1205–15. doi:10.1084/jem.20041948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bos CL, Diks SH, Hardwick JC, Walburg KV, Peppelenbosch MP, Richel DJ. Protein phosphatase 2A is required for mesalazine-dependent inhibition of Wnt/beta-catenin pathway activity. Carcinogenesis. 2006;27(12):2371–82. doi:10.1093/carcin/bgl071.

    Article  CAS  PubMed  Google Scholar 

  40. Chen J, Huang XF. Beta-catenin pathway in ulcerative colitis-associated colorectal cancer and therapeutic implication. J Gastrointest Cancer. 2009;40(1–2):64–5. doi:10.1007/s12029-009-9070-2.

    Article  PubMed  Google Scholar 

  41. Burger D, Travis S. Conventional medical management of inflammatory bowel disease. Gastroenterology. 2011;140(6):1827–37. 10.1053/j.gastro.2011.02.045.

    Article  PubMed  Google Scholar 

  42. Smoak KA, Cidlowski JA. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech Ageing Dev. 2004;125(10–11):697–706. doi:10.1016/j.mad.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  43. Ebert EC. Infliximab and the TNF-alpha system. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G612–20. doi:10.1152/ajpgi.90576.2008.

    Article  CAS  PubMed  Google Scholar 

  44. Rutgeerts PJ. Review article: the limitations of corticosteroid therapy in Crohn's disease. Aliment Pharmacol Ther. 2001;15(10):1515–25.

    Article  CAS  PubMed  Google Scholar 

  45. Matzke MA, Birchler JA. RNAi-mediated pathways in the nucleus. Nat Rev Genet. 2005;6(1):24–35.

    Article  CAS  PubMed  Google Scholar 

  46. Wassenegger M. The role of the RNAi machinery in heterochromatin formation. Cell. 2005;122(1):13–6. doi:10.1016/j.cell.2005.06.034.

    Article  CAS  PubMed  Google Scholar 

  47. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–9.

    Article  CAS  PubMed  Google Scholar 

  48. Waterhouse PM, Wang MB, Lough T. Gene silencing as an adaptive defence against viruses. Nature. 2001;411(6839):834–42. doi:10.1038/35081168.

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Li WX, Ding SW. Induction and suppression of RNA silencing by an animal virus. Science. 2002;296(5571):1319–21. doi:10.1126/science.1070948.

    Article  CAS  PubMed  Google Scholar 

  50. Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999;99(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  51. Vastenhouw NL, Plasterk RH. RNAi protects the Caenorhabditis elegans germline against transposition. Trends Genet. 2004;20(7):314–9. doi:10.1016/j.tig.2004.04.011.

    Article  CAS  PubMed  Google Scholar 

  52. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2(5):E104. doi:10.1371/journal.pbio.0020104.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol. 2013. doi:10.1016/j.jmb.2013.03.007.

    PubMed  PubMed Central  Google Scholar 

  54. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  CAS  PubMed  Google Scholar 

  55. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6. doi:10.1101/gad.1158803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57–68. doi:10.1016/j.cell.2004.06.017.

    Article  CAS  PubMed  Google Scholar 

  58. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108. doi:10.1038/nrg2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23(2):222–6. doi:10.1038/nbt1051.

    Article  CAS  PubMed  Google Scholar 

  60. Rose SD, Kim DH, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. 2005;33(13):4140–56. doi:10.1093/nar/gki732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1998;95(26):15502–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.

    Article  CAS  PubMed  Google Scholar 

  63. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 2007;6(6):443–53. doi:10.1038/nrd2310.

    Article  PubMed  CAS  Google Scholar 

  64. Davidson BL, McCray Jr PB. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12(5):329–40. doi:10.1038/nrg2968.

    Article  CAS  PubMed  Google Scholar 

  65. Rahbek UL, Howard KA, Oupicky D, Manickam DS, Dong M, Nielsen AF, et al. Intracellular siRNA and precursor miRNA trafficking using bioresponsive copolypeptides. J Gene Med. 2008;10(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  66. Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 2002;9(6):1327–33.

    Article  CAS  PubMed  Google Scholar 

  67. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007;67(16):7713–22. doi:10.1158/0008-5472.can-07-1083.

    Article  CAS  PubMed  Google Scholar 

  68. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle. 2008;7(6):759–64.

    Article  CAS  PubMed  Google Scholar 

  69. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29(11):1580–7. doi:10.1038/onc.2009.445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bramsen JB, Laursen MB, Damgaard CK, Lena SW, Ravindra Babu B, Wengel J, et al. Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res. 2007;35(17):5886–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. C-y C, Rana TM. Potent RNAi by short RNA triggers. RNA. 2008;14(9):1714–9.

    Article  CAS  Google Scholar 

  72. Sun X, Rogoff HA, Li CJ. Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol. 2008;26(12):1379–82.

    Article  CAS  PubMed  Google Scholar 

  73. Chang CI, Yoo JW, Hong SW, Lee SE, Kang HS, Sun X, et al. Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol Ther. 2009;17(4):725–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550–3. doi:10.1126/science.1068999.

    Article  CAS  PubMed  Google Scholar 

  75. Liu YP, Westerink JT, ter Brake O, Berkhout B. RNAi-inducing lentiviral vectors for anti-HIV-1 gene therapy. Methods Mol Biol. 2011;721:293–311. doi:10.1007/978-1-61779-037-9_18.

    Article  CAS  PubMed  Google Scholar 

  76. Dissen GA, Lomniczi A, Neff TL, Hobbs TR, Kohama SG, Kroenke CD, et al. In vivo manipulation of gene expression in non-human primates using lentiviral vectors as delivery vehicles. Methods. 2009;49(1):70–7. doi:10.1016/j.ymeth.2009.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu YP, Dambaeva SV, Dovzhenko OV, Garthwaite MA, Golos TG. Stable plasmid-based siRNA silencing of gene expression in human embryonic stem cells. Stem Cells Dev. 2005;14(5):487–92. doi:10.1089/scd.2005.14.487.

    Article  CAS  PubMed  Google Scholar 

  78. Gaspar HB, Thrasher AJ. Gene therapy for severe combined immunodeficiencies. Expert Opin Biol Ther. 2005;5(9):1175–82. doi:10.1517/14712598.5.9.1175.

    Article  CAS  PubMed  Google Scholar 

  79. Boudreau RL, Martins I, Davidson BL. Artificial MicroRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther. 2008;17(1):169–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ehlert EM, Eggers R, Niclou SP, Verhaagen J. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system. BMC Neurosci. 2010;11:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.

    Article  CAS  PubMed  Google Scholar 

  82. Puthenveetil S, Whitby L, Ren J, Kelnar K, Krebs JF, Beal PA. Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification. Nucleic Acids Res. 2006;34(17):4900–11. doi:10.1093/nar/gkl464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cekaite L, Furset G, Hovig E, Sioud M. Gene expression analysis in blood cells in response to unmodified and 2′-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol. 2007;365(1):90–108. doi:10.1016/j.jmb.2006.09.034.

    Article  CAS  PubMed  Google Scholar 

  84. Hamm S, Latz E, Hangel D, Muller T, Yu P, Golenbock D, et al. Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology. 2010;215(7):559–69. doi:10.1016/j.imbio.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  85. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. 2006;12(7):1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bramsen JB, Pakula MM, Hansen TB, Bus C, Langkjær N, Odadzic D, et al. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res. 2010;38(17):5761–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33(1):439–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sipa K, Sochacka E, Kazmierczak-Baranska J, Maszewska M, Janicka M, Nowak G, et al. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA. 2007;13(8):1301–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li Z-Y, Mao H, Kallick DA, Gorenstein DG. The effects of thiophosphate substitutions on native siRNA gene silencing. Biochem Biophys Res Commun. 2005;329(3):1026–30.

    Article  CAS  PubMed  Google Scholar 

  90. Chen PY, Weinmann L, Gaidatzis D, Pei Y, Zavolan M, Tuschl T, et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA. 2008;14(2):263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vaish N, Chen F, Seth S, Fosnaugh K, Liu Y, Adami R, et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res. 2011;39(5):1823–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34(8):1393–7. doi:10.1124/dmd.106.009555.

    Article  PubMed  CAS  Google Scholar 

  93. Konig R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, et al. Human host factors required for influenza virus replication. Nature. 2010;463(7282):813–7. doi:10.1038/nature08699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen M, et al. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Mol Ther. 2006;14(4):476–84.

    Article  CAS  PubMed  Google Scholar 

  96. Howard KA, Kjems J. Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert Opin Biol Ther. 2007;7(12):1811–22.

    Article  CAS  PubMed  Google Scholar 

  97. Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev. 2009;61(9):710–20.

    Article  CAS  PubMed  Google Scholar 

  98. Rahbek UL, Nielsen AF, Dong M, You Y, Chauchereau A, Oupicky D, et al. Bioresponsive hyperbranched polymers for siRNA and miRNA delivery. J Drug Target. 2010;18(10):812–20.

    Article  CAS  PubMed  Google Scholar 

  99. Liu X, Howard KA, Dong M, Andersen MO, Rahbek UL, Johnsen MG, et al. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials. 2007;28(6):1280–8. doi:10.1016/j.biomaterials.2006.11.004.

    Article  CAS  PubMed  Google Scholar 

  100. Andersen MØ, Howard KA, Paludan SR, Besenbacher F, Kjems J. Delivery of siRNA from lyophilized polymeric surfaces. Biomaterials. 2008;29(4):506–12.

    Article  CAS  PubMed  Google Scholar 

  101. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441(7089):111–4. doi:10.1038/nature04688.

    Article  CAS  PubMed  Google Scholar 

  102. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172–6. doi:10.1038/nbt.1602.

    Article  CAS  PubMed  Google Scholar 

  103. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–9. doi:10.1038/nbt1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pouton CW, Seymour LW. Key issues in non-viral gene delivery. Adv Drug Deliv Rev. 2001;46(1–3):187–203.

    Article  CAS  PubMed  Google Scholar 

  105. Ballarín-González B, Nielsen EJ, Thomsen T, Howard K. Mucosal delivery of RNAi therapeutics. In: Howard KA, editor. RNA interference from biology to therapeutics. Advances in delivery science and technology. New York: Springer; 2012. p. 97–125.

    Google Scholar 

  106. Ballarin-Gonzalez B, Dagnaes-Hansen F, Fenton RA, Gao S, Hein S, Dong M, et al. Protection and systemic translocation of siRNA following oral administration of chitosan/siRNA nanoparticles. Mol Ther Nucleic Acids. 2013;2:e76. doi:10.1038/mtna.2013.2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452(7187):591–7. doi:10.1038/nature06765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cho WG, Albuquerque RJ, Kleinman ME, Tarallo V, Greco A, Nozaki M, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci U S A. 2009;106(17):7137–42. doi:10.1073/pnas.0812317106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A. 2004;101(23):8682–6. doi:10.1073/pnas.0402630101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci U S A. 2004;101(23):8676–81. doi:10.1073/pnas.0402486101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Robbins M, Judge A, Ambegia E, Choi C, Yaworski E, Palmer L, et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther. 2008;19(10):991–9. doi:10.1089/hum.2008.131.

    Article  CAS  PubMed  Google Scholar 

  112. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–44. doi:10.1038/nri2707.

    Article  CAS  PubMed  Google Scholar 

  113. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732–8. doi:10.1038/35099560.

    Article  CAS  PubMed  Google Scholar 

  114. Heil F. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9.

    Article  CAS  PubMed  Google Scholar 

  115. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A. 2004;101(15):5598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-|[alpha]| by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  117. Sioud M. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol. 2006;36(5):1222–30.

    Article  CAS  PubMed  Google Scholar 

  118. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 2005;348(5):1079–90.

    Article  CAS  PubMed  Google Scholar 

  119. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23(4):457–62. doi:10.1038/nbt1081.

    Article  CAS  PubMed  Google Scholar 

  120. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K et al. Off-target effects by siRNA can induce toxic phenotype. RNA 2006;12:1188–96.

    Google Scholar 

  121. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis E, Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.

    Article  CAS  PubMed  Google Scholar 

  122. Forsbach A, Nemorin JG, Montino C, Müller C, Samulowitz U, Vicari AP, et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol. 2008;180(6):3729–38.

    Article  CAS  PubMed  Google Scholar 

  123. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5(9):834–9. doi:10.1038/ncb1038.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang Z, Weinschenk T, Guo K, Schluesener HJ. siRNA binding proteins of microglial cells: PKR is an unanticipated ligand. J Cell Biochem. 2006;97(6):1217–29. doi:10.1002/jcb.20716.

    Article  CAS  PubMed  Google Scholar 

  125. Williams BR. Signal integration via PKR. Sci STKE. 2001;2001(89):re2. doi:10.1126/stke.2001.89.re2.

    CAS  PubMed  Google Scholar 

  126. Dever TE. Translation initiation: adept at adapting. Trends Biochem Sci. 1999;24(10):398–403.

    Article  CAS  PubMed  Google Scholar 

  127. Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2α substrate recognition. Cell. 2005;122(6):901–13.

    Article  CAS  PubMed  Google Scholar 

  128. Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488(7413):670–4. doi:10.1038/nature11290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314(5801):997–1001. doi:10.1126/science.1132998.

    Article  CAS  PubMed  Google Scholar 

  130. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314(5801):994–7. doi:10.1126/science.1132505.

    Article  PubMed  Google Scholar 

  131. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med. 2008;205(7):1601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol. 2006;24(5):559–65. doi:10.1038/nbt1205.

    Article  CAS  PubMed  Google Scholar 

  133. Poeck H, Ruland J. From virus to inflammation: mechanisms of RIG-I-induced IL-1beta production. Eur J Cell Biol. 2012;91(1):59–64. doi:10.1016/j.ejcb.2011.01.013.

    Article  CAS  PubMed  Google Scholar 

  134. Flatekval GF, Sioud M. Modulation of dendritic cell maturation and function with mono- and bifunctional small interfering RNAs targeting indoleamine 2,3-dioxygenase. Immunology. 2009;128(1 Suppl):e837–48. doi:10.1111/j.1365-2567.2009.03093.x.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhang Y, Cristofaro P, Silbermann R, Pusch O, Boden D, Konkin T, et al. Engineering mucosal RNA interference in vivo. Mol Ther. 2006;14(3):336–42. doi:10.1016/j.ymthe.2006.04.001.

    Article  CAS  PubMed  Google Scholar 

  136. Ocampo SM, Romero C, Aviñó A, Burgueño J, Gassull MA, Bermúdez J et al. (2011) Functionally enhanced siRNA targeting TNFα attenuates DSS-induced colitis and TLR-mediated immunostimulation in mice. Mol Ther. 2012;20:382–90

    Google Scholar 

  137. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 2008;319(5863):627–30. doi:10.1126/science.1149859.

    Google Scholar 

  138. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-[alpha] knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2008;17(1):162–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Nawroth I, Alsner J, Behlke MA, Besenbacher F, Overgaard J, Howard KA, et al. Intraperitoneal administration of chitosan/DsiRNA nanoparticles targeting TNFalpha prevents radiation-induced fibrosis. Radiother Oncol. 2010;97(1):143–8. doi:10.1016/j.radonc.2010.09.010.

    Article  CAS  PubMed  Google Scholar 

  140. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010;9(11):923–8. doi:10.1038/nmat2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kriegel C, Amiji M. Oral TNF-alpha gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release. 2011;150(1):77–86. doi:10.1016/j.jconrel.2010.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kriegel C, Amiji MM. Dual TNF-alpha/cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin Transl Gastroenterol. 2011;2:e2. doi:10.1038/ctg.2011.1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. 2009;458(7242):1180–4. doi:10.1038/nature07774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang J, Tang C, Yin C. Galactosylated trimethyl chitosan–cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials. 2013;34(14):3667–77. doi:10.1016/j.biomaterials.2013.01.079.

    Article  CAS  PubMed  Google Scholar 

  145. Kobayashi K, Arimura Y, Goto A, Okahara S, Endo T, Shinomura Y, et al. Therapeutic implications of the specific inhibition of causative matrix metalloproteinases in experimental colitis induced by dextran sulphate sodium. J Pathol. 2006;209(3):376–83. doi:10.1002/path.1978.

    Article  CAS  PubMed  Google Scholar 

  146. Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol. 2009;27(6):549–55. doi:10.1038/nbt.1543.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41. doi:10.1038/nature04791.

    Article  CAS  PubMed  Google Scholar 

  148. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12(7):1179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, et al. Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res. 2008;36(7):2136–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yuan X, Li L, Rathinavelu A, Hao J, Narasimhan M, He M, et al. SiRNA drug delivery by biodegradable polymeric nanoparticles. J Nanosci Nanotechnol. 2006;6(9–10):2821–8.

    Article  CAS  PubMed  Google Scholar 

  151. Khan A, Benboubetra M, Sayyed PZ, Ng KW, Fox S, Beck G, et al. Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J Drug Target. 2004;12(6):393–404. doi:10.1080/10611860400003858.

    Article  CAS  PubMed  Google Scholar 

  152. Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA (New York, NY). 2003;9(9):1034–48.

    Article  CAS  Google Scholar 

  153. Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 2003;31(2):589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31(11):2705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42(26):7967–75. doi:10.1021/bi0343774.

    Article  CAS  PubMed  Google Scholar 

  156. Mook OR, Baas F, de Wissel MB, Fluiter K. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther. 2007;6(3):833–43. doi:10.1158/1535-7163.mct-06-0195.

    Article  CAS  PubMed  Google Scholar 

  157. Laursen MB, Pakula MM, Gao S, Fluiter K, Mook OR, Baas F, et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol Biosyst. 2010;6(5):862–70. doi:10.1039/b918869j.

    Article  CAS  PubMed  Google Scholar 

  158. Nauwelaerts K, Fisher M, Froeyen M, Lescrinier E, Aerschot AV, Xu D, et al. Structural characterization and biological evaluation of small interfering RNAs containing cyclohexenyl nucleosides. J Am Chem Soc. 2007;129(30):9340–8. doi:10.1021/ja067047q.

    Article  CAS  PubMed  Google Scholar 

  159. Fisher M, Abramov M, Van Aerschot A, Rozenski J, Dixit V, Juliano RL, et al. Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. Eur J Pharmacol. 2009;606(1–3):38–44. doi:10.1016/j.ejphar.2009.01.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549. doi:10.1146/annurev.immunol.20.100301.064816.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Alan Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olesen, M.T.J., Ballarín-González, B. & Howard, K.A. The application of RNAi-based treatments for inflammatory bowel disease. Drug Deliv. and Transl. Res. 4, 4–18 (2014). https://doi.org/10.1007/s13346-013-0156-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0156-9

Keywords

Navigation