CEAS Aeronautical Journal

, Volume 2, Issue 1–4, pp 81–87 | Cite as

Fuzzy condition monitoring of recirculation fans and filters

Original Paper
  • 57 Downloads

Abstract

A reliable condition monitoring is needed to predict faults. Pattern recognition technologies are often used for finding patterns in complex systems. Condition monitoring can also benefit from pattern recognition. Many pattern recognition technologies, however, only output the classification of the data sample but do not output any information about classes that are also very similar to the input vector. This paper presents a concept for pattern recognition that output similarity values for decision trees. The concept can be used on top of any normal decision tree algorithms and is independent of the learning algorithm. Performed experiments showed that the concept is reliable and it also works with decision tree forests to increase the classification accuracy.

Keywords

Decision tree Fuzzy Condition monitoring Air conditioning Aircraft Similarity 

References

  1. 1.
    Orero, J.O., Levillain, F., Damez-Fontaine, M., Rifqi, M., Bouchon-Meunier, B.: Assessing gameplay emotions from physiological signals. In: International Conference on Kansei Engineering and Emotion Research (2010)Google Scholar
  2. 2.
    Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, New Jersey (2003)Google Scholar
  3. 3.
    Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice Hall, New Jersey (1993)Google Scholar
  4. 4.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks, Monterey (1984)Google Scholar
  5. 5.
    Quinlan, J.R.: Induction of Decision Trees. Springer, Netherlands (1986)Google Scholar
  6. 6.
    Quinlan, J.R.: Programs for Machine Learning. Morgan Kaufmann, San Fransisco (1993)Google Scholar
  7. 7.
    Breiman, L.: Random Forests. Machine Learning 45 (2001)Google Scholar
  8. 8.
    Tong, W., Hong, H., Fang, H., Xie, Q., Perkins, R.: Decision forest: combining the predictions of multiple independent decision tree models. J Chem. Inf. Comput. Sci. 43(2):525–531 (2003)Google Scholar
  9. 9.
    Gerdes, M., Scholz, D.: Feature extraction and sensor optimization for condition monitoring of recirculation fans and filters. In: DGLR: Deutscher Luft- und Raumfahrtkongress 2009: Tagungsband—Ausgewählte Manuskripte (DLRK, Aachen, 01—04 September 2009). ISBN: 978-3-932182-63-4Google Scholar
  10. 10.
    Gerdes, M., Scholz, D.: Parameter optimization of automated signal analysis for condition monitoring of aircraft systems. In: ESTORF, Otto von; THIELECKE, Frank (Hrsg.): 3rd International Workshop on Aircraft System Technologies, AST 2011 (TUHH, Hamburg, 31. Mrz - 01 April 2011). Shaker, Aachen (2011)Google Scholar

Copyright information

© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2011

Authors and Affiliations

  1. 1.Aero-Aircraft Design and Systems GroupHamburg University of Applied SciencesHamburgGermany

Personalised recommendations