Fungal Diversity

, Volume 58, Issue 1, pp 299–310 | Cite as

Environmental barcoding of the ectomycorrhizal fungal genus Cortinarius

  • Suliana E. Teasdale
  • Anne K. Beulke
  • Paul L. Guy
  • David A. Orlovich


Understanding the role of ectomycorrhizal fungi in plant communities is hampered by a lack of knowledge about fungal diversity. DNA barcoding of the ectomycorrhizal fungal genus Cortinarius was used to compare fungal diversity in soil from four plant communities: (i) Nothofagus forest (where Cortinarius is common and diverse), (ii) Kunzea forest (where Cortinarius is present but with low diversity), (iii) a Pinus radiata plantation (Cortinarius is not thought to be present) and (iv) a sub-Antarctic island (where known ectomycorrhizal hosts are absent). PCR primers specific for the ITS region of Cortinarius species were developed. Specificity was tested in vitro and in silico against DNA from basidiocarps of Cortinarius and non-Cortinarius species. The primers were tested for their ability to amplify Cortinarius DNA in soil from forests of the three ectomycorrhizal forest communities and a range of soils from the ectomycorrhiza-free subantarctic Campbell Island. High diversity of Cortinarius was associated with soil of all three ectomycorrhizal communities, despite Cortinarius being previously unrecorded from Pinus. Soil from all three communities share some ectomycorrhizal fungi (including fungi shared between native and exotic hosts), having implications for community succession, introduction of exotic fungi and biodiversity assessment. No Cortinarius was detected from Campbell Island samples. The validated molecular protocol assessed species diversity in a rapid and cost effective way. Baseline biodiversity assessment based on DNA barcoding is more effective at detecting diversity than traditional methods, but requires careful consideration of the difference between ectomycorrhizal fungal diversity in soil versus root-tips.


Cortinarius Internal transcribed spacer region Ectomycorrhizal ecology Environmental DNA Barcoding Taxon-specific primers 



We thank Shagufta Singh, Yasodha Narayanan, Michael Lucas and Vickey Tomlinson for expert technical assistance. We thank Allison and John Knight for providing access to their property and for logistical support. This research was supported through funding to DAO and PLG from the Shore Fund and Performance-Based Research Fund, University of Otago. SET is supported by a University of Otago Pacific Island Masters Scholarship.

Supplementary material

13225_2012_218_MOESM1_ESM.docx (655 kb)
ESM 1 (DOCX 655 kb)


  1. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779. doi: 10.1111/j.1462-2920.2004.00675.x PubMedCrossRefGoogle Scholar
  2. Anderson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a moorland—Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 5:1121–1132. doi: 10.1046/j.1462-2920.2003.00522.x PubMedCrossRefGoogle Scholar
  3. Bastias B, Xu Z, Cairney J (2006) Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi. N Phytol 172:149–158. doi: 10.1111/j.1469-8137.2006.01793.x CrossRefGoogle Scholar
  4. Baylis GTS (1967) Experiments on the ecological significance of phycomycetous mycorrhizas. N Phytol 66:231–234. doi: 10.1111/j.1469-8137.1967.tb06001.x CrossRefGoogle Scholar
  5. Baxter JW, Dighton J (2005) Phosphorus source alters host plant response to ectomycorrhizal diversity. Mycorrhiza 15:513–523. doi: 10.1007/s00572-005-0359-0 Google Scholar
  6. Bridge PD, Roberts PJ, Spooner BM, Panchal G (2003) On the unreliability of published DNA sequences. N Phytol 160:43–48. doi: 10.1046/j.1469-8137.2003.00861.x CrossRefGoogle Scholar
  7. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Pure culture isolation of fungi and production of inoculum. In: Working with mycorrhizas and agriculture. Pirie Printers, Canberra, Australia, pp 233–234Google Scholar
  8. Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:525–564. doi: 10.1146/ CrossRefGoogle Scholar
  9. Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. N Phytol 184:449–456. doi: 10.1111/j.1469-8137.2009.03003.x Google Scholar
  10. Cairney JWG, Chambers SM (1999) Ectomycorrhizal fungi—key genera in profile. Springer, New YorkGoogle Scholar
  11. Chu-Chou M, Grace LJ (1988) Mycorrhizal fungi of radiata pine in different forests of the North and South islands in New Zealand. Soil Biol Biochem 20:883–886. doi: 10.1016/0038-0717(88)90098-3 CrossRefGoogle Scholar
  12. Chu-Chou M, Grace LJ (1990) Mycorrhizal fungi of radiata pine seedlings in nurseries and trees in forests. Soil Biol Biochem 22:959–966. doi: 10.1016/0038-0717(90)90136-N CrossRefGoogle Scholar
  13. Danks M, Lebel T, Vernes K (2010) ‘Cort short on a mountaintop’—Eight new species of sequestrate Cortinarius from sub-alpine Australia and affinities to sections within the genus. Persoonia 24:106–126. doi: 10.3767/003158510X512711 PubMedCrossRefGoogle Scholar
  14. Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270. doi: 10.1007/s00572-007-0129-2 PubMedCrossRefGoogle Scholar
  15. Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. N Phytol 187:475–484. doi: 10.1111/j.1469-8137.2010.03277.x CrossRefGoogle Scholar
  16. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v.5.3.
  17. Edwards IP, Zak DR (2010) Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol Ecol 19:1469–1482. doi: 10.1111/j.1365-294X.2010.04566.x PubMedCrossRefGoogle Scholar
  18. Engels B (2005) Amplify 3 Version 3.14 for MacOS X. University of Wisconsin
  19. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhiza and rusts. Mol Ecol 2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x PubMedCrossRefGoogle Scholar
  20. Garnica S, Weiβ M, Oertel B, Oberwinkler F (2005) A framework for a phylogenetic classification in the genus Cortinarius (Basidiomycota, Agaricales) derived from morphological and molecular data. Can J Bot 83:1457–1477. doi: 10.1139/b05-107 CrossRefGoogle Scholar
  21. Gasparini B, Soop K (2008) Contribution to the knowledge of Cortinarius (Agaricales, Cortinariaceae) of Tasmania (Australia) and New Zealand. Australas Mycol 27:173–203Google Scholar
  22. Hertel D (2010) Tree roots in canopy soil of old European beech trees—An ecological reassessment of a forgotten phenomenon. Pedobiol 54:119–125. doi: 10.1016/j.pedobi.2010.11.003 CrossRefGoogle Scholar
  23. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenetics Evol 42:543–555Google Scholar
  24. Høiland K, Holst-Jensen A (2000) Cortinarius phylogeny and possibly taxonomic implications of ITS rDNA sequences. Mycologia 92: 694–710Google Scholar
  25. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871. doi: 10.1046/j.0962-1083.2001.01333.x PubMedCrossRefGoogle Scholar
  26. Jonsson LM, Nilsson M-C, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364. doi: 10.1034/j.1600-0706.2001.930301.x CrossRefGoogle Scholar
  27. Katoh K, Kazuharu M, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066. doi: 10.1093/nar/gkf436 PubMedCrossRefGoogle Scholar
  28. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby's Dictionary of the Fungi, 9th Edition. CABI Publishing, UKGoogle Scholar
  29. Leake JR (2001) Is diversity of ectomycorrhizal fungi important for ecosystem function? N Phytol 152:1–8. doi: 10.1046/j.0028-646X.2001.00249.x CrossRefGoogle Scholar
  30. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinforma 22:1658–1659. doi: 10.1093/bioinformatics/btl158 CrossRefGoogle Scholar
  31. McKenzie EHC, Buchanan PK, Johnston PR (2000) Checklist of fungi on Nothofagus species in New Zealand. N Z J Bot 38:635–720. doi: 10.1080/0028825X.2000.9512711 CrossRefGoogle Scholar
  32. McKenzie EHC, Johnston PR, Buchanan PK (2006) Checklist of fungi on teatree (Kunzea and Leptospermum species) in New Zealand. N Z J Bot 44:293–335. doi: 10.1080/0028825X.2006.9513025 CrossRefGoogle Scholar
  33. Nadkarni NM (1981) Canopy roots: convergent evolution in rainforest nutrient cycles. Sci 214:1023–1024. doi: 10.1126/science.214.4524.1023 CrossRefGoogle Scholar
  34. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H (2008) Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinforma 4:193–201. doi: 10.4137/EBO.S653 Google Scholar
  35. O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550. doi: 10.1128/AEM.71.9.5544-5550.2005 PubMedCrossRefGoogle Scholar
  36. Orlovich DA, Cairney JWG (2004) Ectomycorrhizal fungi in New Zealand: current perspectives and future directions. N Z J Bot 42:712–738. doi: 10.1080/0028825X.2004.9512926 CrossRefGoogle Scholar
  37. Orlovich DA, Oliver A-MB (2002) The taxonomic identity of Gymnopilus rubrocastaneus recently described from New Zealand. N Z J Bot 40:481–487. doi: 10.1080/0028825X.2002.9512808 CrossRefGoogle Scholar
  38. Orlovich DA, Draffin SJ, Daly RA, Stephenson SL (2012) Piracy in the high trees: ectomycorrhizal fungi from an aerial “canopy soil” microhabitat. Mycol. doi: 10.3852/11-307
  39. Peintner U, Bougher NL, Castellano M, Moncalvo M, Moser M, Trappe J, Vilgalys R (2001) Multiple origins of sequestrate fungi related to Cortinarius (Cortinariaceae). Am J Bot 88:2168–2179PubMedCrossRefGoogle Scholar
  40. Peintner U, Moser M, Vilgalys R (2002a) Thaxterogaster is a taxonomic synonym of Cortinarius: new names and new combinations. Mycotaxon 81:177–184Google Scholar
  41. Peintner U, Moser M, Vilgalys R (2002b) Rozites, Cuphocybe and Rapacea are taxonomic synonyms of Cortinarius: new names and new combinations. Mycotaxon 83:447–452Google Scholar
  42. Peintner U, Moser MM, Thomas KA, Manimohan P (2003) First records of ectomycorrhizal Cortinarius species (Agaricales, Basidiomycetes) from tropical India and their phylogenetic position based on rDNA ITS sequences. Mycol Res 107:485–494. doi: 10.1017/S0953756203007585 PubMedCrossRefGoogle Scholar
  43. Peintner U, Moncalvo J-M, Vilgalys R (2004) Toward a better understanding of the infrageneric relationships in Cortinarius (Agaricales, Basidiomycota). Mycol 96:1042–1058CrossRefGoogle Scholar
  44. Porras-Alfaro A, Herrera J, Natvig DO, Sinsabaugh RL (2007) Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296:65–75. doi: 10.1007/s11104-007-9290-9 Google Scholar
  45. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogeny inference under mixed models. Bioinforma 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  46. Ryberg M, Nilsson RH, Kristiansson E, Töpel M, Jacobsson S, Larsson E (2008) Mining metadata from unidentified ITS sequences in GenBank: a case study in Inocybe (Basidiomycota). BMC Evol Biol 8:50. doi: 10.1186/1471-2148-8-50 PubMedCrossRefGoogle Scholar
  47. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spounge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1117018109
  48. Segedin BP, Pennycook SR (2001) A nomenclatural checklist of agarics, boletes, and related secotioid and gasteromycetous fungi from New Zealand. N Z J Bot 39:285–348. doi: 10.1080/0028825X.2001.9512739 CrossRefGoogle Scholar
  49. Smit E, Veenman C, Baar J (2003) Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers. Microbiol Ecol 45:49–57. doi: 10.1016/S0168-6496(03)00109-0 CrossRefGoogle Scholar
  50. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, CambridgeGoogle Scholar
  51. Soop K (2001) Contribution à l’étude de la mycoflore cortinarioïde de Nouvelle-Zélande. Bull Soc Mycol Fr 117:91–132Google Scholar
  52. Soop K (2002) Contribution à l’étude de la mycoflore cortinarioïde de Nouvelle-Zélande. II. Bull Soc Mycol Fr 118:173–194Google Scholar
  53. Soop K (2005) A contribution to the study of the cortinarioid mycoflora of New Zealand, III. N Z J Bot 43:551–562. doi: 10.1080/0028825X.2005.9512974 CrossRefGoogle Scholar
  54. Soop K (2012) Cortinarioid fungi of New Zealand—An Iconography and key, 8th edn. Éditions Scientrix, MoraGoogle Scholar
  55. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32. doi: 10.1006/fgbi.2000.1228 PubMedCrossRefGoogle Scholar
  56. Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. N Phytol 159:153–165. doi: 10.1046/j.1469-8137.2003.00792.x CrossRefGoogle Scholar
  57. Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. N Phytol 170:581–596. doi: 10.1111/j.1469-8137.2006.01678.x CrossRefGoogle Scholar
  58. Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. N Phytol 180:479–490. doi: 10.1111/j.1469-8137.2008.02561.x CrossRefGoogle Scholar
  59. Vance ED, Nadkarni NM (1996) Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol Biochem 22:677–684. doi: 10.1016/0038-0717(90)90015-R CrossRefGoogle Scholar
  60. Walbert K, Ramsfield TD, Ridgway HJ, Jones EE (2010a) Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel associations determined by molecular analysis. Mycorrhiza 20:209–215. doi: 10.1007/s00572-009-0277-7 PubMedCrossRefGoogle Scholar
  61. Walbert K, Ramsfield TD, Ridgway HJ, Jones EE (2010b) Ectomycorrhiza of Pinus radiata (D. Don 1836) in New Zealand—an above- and below- ground assessment. Australas Mycol 29:7–16Google Scholar
  62. Wallander H, Johansson U, Sterkenburg E, Brandström Durling M, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. N Phytol 187:1124–1134. doi: 10.1111/j.1469-8137.2010.03324.x CrossRefGoogle Scholar
  63. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (ed) PCR protocols, a guide to methods and applications. Academic Press, San Diego, pp 315–324Google Scholar

Copyright information

© Mushroom Research Foundation 2012

Authors and Affiliations

  • Suliana E. Teasdale
    • 1
  • Anne K. Beulke
    • 1
    • 2
  • Paul L. Guy
    • 1
  • David A. Orlovich
    • 1
  1. 1.Department of BotanyUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Ecology, Evolution and Behavior, College of Biological SciencesUniversity of MinnesotaSt PaulUSA

Personalised recommendations