Skip to main content
Log in

Statistical optimization of cellulases production by Aspergillus niger HQ-1 in solid-state fermentation and partial enzymatic characterization of cellulases on hydrolyzing chitosan

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Cultivation conditions of cellulases production by Aspergillus niger HQ-1 in solid-state fermentation (SSF) were optimized. Furthermore, partial enzymatic characterization of the crude cellulases on hydrolyzing chitosan was studied. The moisture content, cultivation temperature, and initial culture pH were identified by Plackett-Burman design (PBD) as the significant factors for cellulases activities. The method of steepest ascent was undertaken to determine the optimal regions of the three significant factors. Box-Behnken design (BBD) and response surface analysis were adopted to further investigate the interaction effects between the three variables on cellulases activities and to determine the optimal values of the variables. The optimal ranges of moisture content, cultivation temperature and initial culture pH were 70.3–70.6%, 33.5–33.7°C and 4.626–4.662, respectively. Under the optimized conditions, endoglucanase activity, filter paper activity (FPA) and β-glucosidase activity were 305.103, 42.432 and 158.527 U/g, respectively. The optimal pH and temperature of the crude enzymes for chitosan hydrolysis were determined to be 5.6 and 50°C, respectively. The chitosanolytic activity was enhanced by metallic ions in order of Mn2+, Mg2+, Ca2+ and K+, but inhibited by Zn2+, Ba2+, Co2+, Fe3+, Cu2+ and Ag+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40(3):399–407

    Article  CAS  Google Scholar 

  • Brijwani K, Oberoi HS, Vadlani PV (2010) Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem 45(1):120–128

    Article  CAS  Google Scholar 

  • Dai FL (1987) Fungal Forms and Class. Science Press, Beijing, pp 89–94

    Google Scholar 

  • Dou JL, Tan CY, Du YG, Bai XF, Wang KY, Ma XJ (2007) Effects of chitooligosaccharides on rabbit neutrophils in vitro. Carbohydr Polym 69(2):209–213

    Article  CAS  Google Scholar 

  • Gao JM, Weng HB, Zhu DH, Yuan MX, Guan FX, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99(16):7623–7629

    Article  PubMed  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulose activities. Pure Appl Chem 59(2):257–268

    Article  CAS  Google Scholar 

  • Guerra G, Casado MRLG, Arguelles J, Sanchez MI, Manzano AM, Guzman T (2006) Cellulase production with Sugarcane straw by Trichoderma citrinoviride on solid bed. Sugar Tech 8(1):30–35

    Article  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147(3):617–630

    Article  CAS  Google Scholar 

  • Hu Y, Du YM, Yang JH, Tang YF, Li J, Wang XY (2007) Self-aggregation and antibacterial activity of N-acylated chitosan. Polymer 48(11):3098–3106

    Article  CAS  Google Scholar 

  • Ilyina AV, Tikhonov VE, Albulov AI, Varlamov VP (2000) Enzymic preparation of acid-free-water-soluble chitosan. Process Biochem 35(6):563–568

    Article  CAS  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006a) Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using Response Surface Methodology. World J Microb Biotechol 22(2):169–176

    Article  CAS  Google Scholar 

  • Jatinder K, Chadha BS, Saini HS (2006b) Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J Microb Biotechol 22(1):15–22

    Article  CAS  Google Scholar 

  • Kalogeris E, Iniotaki F, Topakas E, Christakopoulos P, Kekos D, Macris BJ (2003a) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86(3):207–213

    Article  PubMed  CAS  Google Scholar 

  • Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003b) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38(7):1099–1104

    Article  CAS  Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91(2):153–156

    Article  PubMed  CAS  Google Scholar 

  • Kim BK, Lee BH, Lee YJ, Jin IH, Chung CH, Lee JW (2009) Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol 44(6–7):411–416

    Article  CAS  Google Scholar 

  • Latifian M, Esfahani ZH, Barzegar M (2007) Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol 98(18):3634–3637

    Article  PubMed  CAS  Google Scholar 

  • Li XH, Yang HJ, Roy B, Park EY, Jiang LJ, Wang D, Miao YG (2010) Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol Res 165(3):190–198

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Ma KL (2003) Study of catalytic hydrolysis of chitosan by cellulase. China Surfactant Detergent Cosmetics 33(1):22–25

    CAS  Google Scholar 

  • Liu J, Xia W (2006) Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochem Eng J 30(1):82–87

    Article  CAS  Google Scholar 

  • Long CN, Ou YQ, Guo P, Liu YT, Cui JJ, Long MN, Hu Z (2009) Cellulase production by solid state fermentation using bagasse with Penicillium decumbens L-06. Ann Microbiol 59(3):517–523

    Article  CAS  Google Scholar 

  • Mach RL, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60(5):515–522

    PubMed  CAS  Google Scholar 

  • Mandels M (1985) Applications of cellulases. Biochem Soc Trans 13:414–416

    PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mo HT, Zhang XY, Li ZH (2004) Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochem 39(10):1293–1297

    Article  CAS  Google Scholar 

  • Oberoi HS, Chavan Y, Bansal S, Dhillon GS (2010) Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprocess Technol 3(4):528–536

    Article  CAS  Google Scholar 

  • Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled Kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78(1):39–48

    Article  PubMed  CAS  Google Scholar 

  • Rocky-Salimi K, Hamidi-Esfahani Z (2010) Evaluation of the effect of particle size, aeration rate and harvest time on the production of cellulase by Trichoderma reesei QM9414 using response surface methodology. Food Bioprod Process 88(1):61–66

    Article  CAS  Google Scholar 

  • Saghai-Maroof MA, Solman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphi- sms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Nati Acad Sci USA 81(24):8014–8018

    Article  CAS  Google Scholar 

  • Saha BC (2004) Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem 39:1871–1876

    Article  CAS  Google Scholar 

  • Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):437–441

    Article  CAS  Google Scholar 

  • Soni R, Nazir A, Chadha BS (2010) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind Crop Prod 31(2):277–283

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsai GJ, Zhang SL, Shieh PL (2004) Antimicrobial activity of a low molecular-weight chitosan obtained from cellulase digestion of chitosan. J Food Prot 67(2):396–398

    PubMed  CAS  Google Scholar 

  • Wang SL, Lin HT, Liang TW, Chen YJ, Yen YH, Guo SP (2008) Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour Technol 99(10):4386–4393

    Article  PubMed  CAS  Google Scholar 

  • Xia LM, Shen XL (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91(3):259–262

    Article  CAS  Google Scholar 

  • Xia WS, Liu P, Liu J (2008) Advance in chitosan hydrolysis by non-specific cellulases. Bioresour Technol 99(15):6751–6762

    Article  PubMed  CAS  Google Scholar 

  • Xu FJ, Chen HZ, Li ZH (2002) Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation. Enzyme Microb Technol 30(1):45–48

    Article  CAS  Google Scholar 

  • Xu JG, Zhao XM, Han XW, Du YG (2007) Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochem Phys 87(3):220–228

    Article  CAS  Google Scholar 

  • Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW (2007) Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 25(11):2085–2094

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, He ZP, Deng GH, Huang ZY, Tan XC (2003) Enzyme kinetics of amylase and cellulase on hydrolyzing chitosan. China Mae Sci 27(11):59–63

    CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by encouragement foundation of Department of Science & Technology of Shandong Province for excellent middle-aged scientist (2005gg3202084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Sang, Q. & Zhang, W. Statistical optimization of cellulases production by Aspergillus niger HQ-1 in solid-state fermentation and partial enzymatic characterization of cellulases on hydrolyzing chitosan. Ann Microbiol 62, 629–645 (2012). https://doi.org/10.1007/s13213-011-0300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0300-z

Keywords

Navigation