Skip to main content
Log in

Development of microbiochip for detection of metalloproteinase 7 using fluorescence resonance energy transfer

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A protease is any enzyme that catalyzes the hydrolysis of proteins into smaller peptide fragments and amino acids, a process known as proteolysis. They are involved in a multitude of normal biological processes as well as in diseases, including cancer, stroke and infections. Here we present a microfluidicbased assay system to detect proteolytic activity using fluorescence resonance energy transfer (FRET) by quantum dot (QD)-peptide conjugates immobilized on microbeads. As an energy donor, QD was immobilized on the microbead surface by the avidin-biotin interaction. As an energy acceptor, the fluorophorelabeled peptide was then associated with QD, thus quenching the photoluminescence (PL) of the QD. The functionalized microbeads were introduced into the microbiochip and captured by a micropillar in the reaction chamber. In the presence of matrix metalloprotease-7 (MMP-7) as a model protease, the PL of QD quenched by fluorophore was recovered due to the proteolytic activity of MMP-7 in the fabricated microbiochip. Moreover, the FRET efficiency induced by MMP-7 was linearly dependent on the logarithmic concentration of MMP-7. This technology is not limited to sensing MMP-7, but could be used to monitor other protease activities (Schematic diagram).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shin, H.R. Global activity of cancer registries and cancer control and cancer incidence statistics in Korea. JPMPH 41, 84–91 (2008).

    Google Scholar 

  2. Walther, A. et al. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer 9, 489–499 (2009).

    Article  CAS  Google Scholar 

  3. Nagase, H. & Woessner, J.F. Matrix metalloproteinases. J. Biol. Chem. 274, 21491 (1999).

    Article  CAS  Google Scholar 

  4. Kong, D.H., Jung, S.H., Lee, S.T. & Ha, K.S. On-chip assay of matrix metalloproteinase-3 activity using fluorescence-conjugated gelatin arrays. BioChip J. 4, 210–216 (2010).

    Article  CAS  Google Scholar 

  5. Zucker, S. & Vacirca, J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 23, 101–117 (2004).

    Article  CAS  Google Scholar 

  6. Förster, T. Fluoreszenz Organischer Verbindungen. 1951. (Vandenhoeck & Ruprecht, Göttingen).

    Google Scholar 

  7. Davis, B.W. et al. FRET detection of proteins using fluorescently doped electrospun nanofibers and pattern recognition. Langmuir (2011).

    Google Scholar 

  8. Kim, J.H. et al. A microfluidic protease activity assay based on the detection of fluorescence polarization. Anal. Chim. Acta 577, 171–177 (2006).

    Article  CAS  Google Scholar 

  9. Kim, Y.P., Oh, Y.H., Oh, E. & Kim, H.S. Chip-based protease assay using fluorescence resonance energy transfer between quantum dots and fluorophores. Biochip J. 1, 228–233 (2007).

    Google Scholar 

  10. Furukawa, K., Nakashima, H., Kashimura, Y. & Torimitsu, K. Novel “Lipid-Flow Chip” configuration to determine donor-to-acceptor ratio-dependent fluorescence resonance energy transfer efficiency. Langmuir 24, 921–926 (2008).

    Article  CAS  Google Scholar 

  11. Nishioka, T., Frohman, M.A., Matsuda, M. & Kiyokawa, E. Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a Förster Resonance Energy Transfer (FRET) biosensor. J. Biol. Chem. 285, 35979–35987 (2010).

    Article  CAS  Google Scholar 

  12. Carlson, H.J. & Campbell, R.E. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Curr. Opin. Biotechnol. 20, 19–27 (2009).

    Article  CAS  Google Scholar 

  13. Lichlyter, D.J., Grant, S.A. & Soykan, O. Development of a novel FRET immunosensor technique. Biosens. Bioelectron. 19, 219–226 (2003).

    Article  CAS  Google Scholar 

  14. Popovtzer, R. et al. Novel integrated electrochemical nano-biochip for toxicity detection in water. Nano Lett. 5, 1023–1027 (2005).

    Article  CAS  Google Scholar 

  15. Graham, D.L., Ferreira, H.A. & Freitas, P.P. Magnetoresistive-based biosensors and biochips. Trends Biotechnol. 22, 455–462 (2004).

    Article  CAS  Google Scholar 

  16. Makohliso, S. et al. Surface characterization of a biochip prototype for cell-based biosensor applications. Langmuir 15, 2940–2946 (1999).

    Article  CAS  Google Scholar 

  17. Albers, J., Grunwald, T., Nebling, E., Piechotta, G. & Hintsche, R. Electrical biochip technology-a tool for microarrays and continuous monitoring. Anal. Bioanal. Chem. 377, 521–527 (2003).

    Article  CAS  Google Scholar 

  18. Zhao, C. & Wittstock, G. Scanning electrochemical microscopy for detection of biosensor and biochip surfaces with immobilized pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as enzyme label. Biosens. Bioelectron. 20, 1277–1284 (2005).

    Article  CAS  Google Scholar 

  19. Yi, Y.C. et al. Matrix metalloproteinase-7 (MMP-7) polymorphism is a risk factor for endometrial cancer susceptibility. Clin. Chem. Lab. Med. 48, 337–344 (2010).

    Article  CAS  Google Scholar 

  20. Crivat, G. et al. Quantum dot FRET-based probes in thin films grown in microfluidic channels. J. Am. Chem. Soc. 132, 1460–1461 (2010).

    Article  CAS  Google Scholar 

  21. Buranda, T. et al. Biomimetic molecular assemblies on glass and mesoporous silica microbeads for biotechnology. Langmuir 19, 1654–1663 (2003).

    Article  CAS  Google Scholar 

  22. Sukhanova, A. et al. Nanocrystal-encoded fluorescent microbeads for proteomics: antibody profiling and diagnostics of autoimmune diseases. Nano Lett. 7, 2322–2327 (2007).

    Article  CAS  Google Scholar 

  23. Bhushan, B. MEMS/NEMS and BioMEMS/BioNEMS: materials, devices, and biomimetics. Nanotribology and Nanomechanics II, 833–945 (2011).

    Chapter  Google Scholar 

  24. Fernandes, R. et al. Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing bacteria in a bioMEMS device. Lab. Chip 10, 1128–1134 (2010).

    Article  CAS  Google Scholar 

  25. Ko, Y.-J. et al. Real-time immunoassay with a PDMSglass hybrid microfilter electro-immunosensing chip using nanogold particles and silver enhancement. Sens. Actuator B-Chem. 132, 1810–1817 (2008).

    Article  Google Scholar 

  26. Ha, S.-M., Ju, J.-K., Ahn, Y. & Hwang, S.Y. Separation-type multiplex polymerase chain reaction chip for detecting male infertility. Jpn. J. Appl. Phys. 47, 5231–5235 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoomin Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.Y., Han, B., Park, C. et al. Development of microbiochip for detection of metalloproteinase 7 using fluorescence resonance energy transfer. BioChip J 7, 164–172 (2013). https://doi.org/10.1007/s13206-013-7210-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7210-z

Keywords

Navigation