Skip to main content

Advertisement

Log in

Electrical biochip technology—a tool for microarrays and continuous monitoring

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Based on electrical biochips made in Si-technology cost effective portable devices have been constructed for field applications and point of care diagnosis. These miniaturized amperometric biosensor devices enable the evaluation of biomolecular interactions by measuring the redox recycling of ELISA products, as well as the electrical monitoring of metabolites. The highly sensitive redox recycling is facilitated by interdigitated ultramicroelectrodes of high spatial resolution. The application of these electrical biochips as DNA microarrays for the molecular diagnosis of viral infections demonstrates the measurement procedure. Self-assembling of capture oligonucleotides via thiol-gold coupling has been used to construct the DNA interface on-chip. Another application for this electrical detection principle is continuous measuring with bead-based biosensors. Here, paramagnetic nanoparticles are used as carriers of the bioanalytical interface in ELISA format. A Si-micromachined glucose sensor for continuous monitoring in interstitial fluid ex vivo shows the flexibility of the electrical platform. Here the novel approach is a pore membrane in micrometer-dimensions acting as a diffusion barrier. The electrochemical detection takes place in a cavity containing glucose oxidase and a Pt-electrode surface. The common hydrogen peroxide detection, together with Si technology, enable precise differential measurements using a second cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. U.Wollenberger, R.Hintsche, F.Scheller (1995) Biosensors for analytical microsystems. In: Reichl H (ed) Microsystem technologies. Springer Verlag, Berlin Heidelberg New York pp 687–693

  2. Hintsche R, Dransfeld I, Scheller F, Pham MT, Hoffmann W, Hüller J, Moritz W, (1990) Biosens Bioelectron 5:327–334

    Article  CAS  Google Scholar 

  3. Vo-Dinh T, Cullum B (2000) Fresenius' J Anal Chem 366:540–551

    Google Scholar 

  4. Palecek E, Fojta M, Jelen F (2002) Bioelectrochemistry 56:85–90

    Article  CAS  PubMed  Google Scholar 

  5. Wang J (1999) Anal Chem 71:328–332

    Article  Google Scholar 

  6. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Nucleic Acids Res 27:4830–4837

    Article  CAS  PubMed  Google Scholar 

  7. Berggren C, Stalhandske P, Brundell J, Johansson G (1999) Electroanalysis 11:156–160

    Article  CAS  Google Scholar 

  8. Alfonta L, Singh AK, Willner I (2001) Anal Chem 73:91–102

    CAS  PubMed  Google Scholar 

  9. Willner I, Willner B, Katz E (2002) Rev Mol Biotechnol 82:301–463

    Article  Google Scholar 

  10. Hintsche R, Paeschke M, Wollenberger U, Schnackenberg U, Wagner B, Lisec T (1994) Biosens Bioelectron 9:697–705

    Google Scholar 

  11. Niwa O, Xu Y, Halsall HB, Heineman WR (1993) Anal Chem 65:1559–63

    CAS  PubMed  Google Scholar 

  12. Paeschke M, Dietrich F, Uhlig A, Hintsche R (1996) Electroanalysis 10:891–898

    Google Scholar 

  13. Hintsche R, Albers J, Bernt H, Eder A (2000) Electroanalysis 12:660–665

    Article  CAS  Google Scholar 

  14. Bain CD, Whitesides GM (1989) J Am Chem Soc 111:7164–7175

    CAS  Google Scholar 

  15. Brockman J, Frutos AG, Corn RM (1999) J Am Chem Soc 121:8044–8051

    Article  CAS  Google Scholar 

  16. Kelley SO, Barton JK, Jackson NM, Hill MG (1997) Bioconjug Chem 8:31–37

    Article  CAS  PubMed  Google Scholar 

  17. Harris T (2000) Med Res Rev 20:203–211

    Article  CAS  PubMed  Google Scholar 

  18. Risch NJ (2000) Nature 405:847–856

    CAS  PubMed  Google Scholar 

  19. Roses AD (2000) Nature 405:857–865

    Google Scholar 

  20. Pividri MI, Merkoci A, Alegret S (2000) Biosens Bioelectron 15:291–303

    Article  CAS  PubMed  Google Scholar 

  21. O´Brien JC, Jones VW, Porter MD, Mosher CL, Henderson E (2000) Anal Chem 72:703–710

    Article  CAS  PubMed  Google Scholar 

  22. Pozo F, Tenorio AJ (1999) Virol Methods 79:9–19

    Article  CAS  Google Scholar 

  23. Yamamoto T, Nakamura Y (2000) J Neurovir 6:410–417

    CAS  Google Scholar 

  24. Defoort J-P, Martin M, Casano B, Prato S, Camilla C, Fert V (2000) J Clin Microbiol 38:1066–1071

    CAS  PubMed  Google Scholar 

  25. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–81

    Article  Google Scholar 

  26. Park SJ, Taton TA, Mirkin CA (2002) Science 295:1503–6

    CAS  PubMed  Google Scholar 

  27. Weizmann Y, Patolsky F, Willner I (2001) Analyst 126:1502–4

    Article  CAS  PubMed  Google Scholar 

  28. Reichert J, Csaki A, Möller R, Köhler JM, Fritzsche W (2000) Anal Chem 72:6025–6029

    Article  CAS  PubMed  Google Scholar 

  29. Möller R, Csaki A, Köhler JM, Fritzsche W (2001) Langmuir 17:5426–5430

    Article  Google Scholar 

  30. Cai H, Xu Y, Zhu N, He P, Fang Y (2002) Analyst 127:803–8

    Article  CAS  PubMed  Google Scholar 

  31. Wang J, Xu D, Kawde AN, Polsky R (2001) Anal Chem 73:5576–5581

    Article  CAS  PubMed  Google Scholar 

  32. Dequaire M, Degrand C, Limoges B (1999) Anal Chem 71:2571–2577

    Article  CAS  PubMed  Google Scholar 

  33. Perez FG, Mascini M, Tothill IE, Turner AP (1998) Anal Chem 70:2380–2386

    Article  CAS  PubMed  Google Scholar 

  34. Che Y, Li Y, Slavik M (2001) Biosens Bioelectron 16:791–797

    Google Scholar 

  35. Wang J (2002) Acc Chem Res 35:811–816

    Article  CAS  PubMed  Google Scholar 

  36. Gabig-Ciminska M, Holmgren A, Andresen H, Barken KB, Wümpelmann M, Albers J, Hintsche R, Breitenstein A, Neubauer P, Los M, Czyz A, Wegrzyn G, Silfversparre G, Jürgen B, Schweder T, Enfors SO (in press) Biosens Bioelectron

  37. The Diabetic Control and Complications Trial Research Group (1993) N Engl J Med 329:997–1036

    Google Scholar 

  38. Gerritsen M, Jansen JA, Luttermen JA (1999) Neth J Med 54:167–179

    Article  CAS  PubMed  Google Scholar 

  39. Shichiri M, Sakakida M, Nishida K, Shimoda S (1998) Artif Org 22:32–42

    Article  CAS  Google Scholar 

  40. Rhemrev-Boom RM, Tiessen RG, Jonker AA, Venema K, Vadgama P, Korf J (2002) Clin Chim Acta 316:1–10

    Article  CAS  PubMed  Google Scholar 

  41. Gerritsen M, Jansen JA, Kros A, Vriezema DM, Sommerdijk NAJM, Nolte RJM, Lutterman JA Van Hövell SWFM, Van der Gaag A (2001) J Biomed Mat Res 54:69–75

    Article  CAS  Google Scholar 

  42. Kerner W, Kiwit M, Linke B, Keck FS, Zier H, Pfeiffer EF (1993) Biosens Bioelectron 8:473–482

    Google Scholar 

  43. Kerner W (2001) Exp Clin Endocrinol Diab 2:341–346

    Google Scholar 

  44. Meyerhoff C, Bischof F, Sternberg F, Zier H, Pfeiffer EF (1992) Diabetologica 35:1087–1092

    CAS  Google Scholar 

  45. Maran A, Crepaldi C, Tiengo A, Grassi G, Vitali E, Pagano G, Bistoni S, Calabrese G, Santeusanio F, Leonetti F, Ribaudo M, Di Mario U, Annuzzi G, Genovese S, Riccardi G, Previti M, Cucinotta D, Giorgino F, Bellomo A, Giorgino R, Poscia A, Varalli M (2002) Patients Diab Care 25:347–352

    CAS  Google Scholar 

  46. Jungheim K, Wientjes KJ, Heinemann l, Lodwig V, Koschinsky T, Schoonen AJ (2001) Diab Care 24:1696–1697

    CAS  Google Scholar 

  47. Schaupp L, Ellmerer M, Brunner GA, Wutte A, Sendlhofer G, Trajanoski Z, Skrabal F, Pieber TR, Wach P (1999) Am J Physiol 276:E401–408

    CAS  PubMed  Google Scholar 

  48. Trajanoski Z, Brunner GA, Schaupp L, Ellmerer M, Wach P, Pieber TR, Kotanko P, Skrabal F (1997) Diab Care 20:1114–1121

    CAS  Google Scholar 

  49. Tamada JA, Garg S, Jovanovic L, Pitzer KR, Fermi S, Potts RO (1999) JAMA 282:1839–1844

    Article  CAS  PubMed  Google Scholar 

  50. Tierney MJ, Jayalakshmi Y, Prris NA, Reidy MP, Uhegbu C, Vijayakumar P (1999) Clin Chem 45:1681–1683

    PubMed  Google Scholar 

  51. Mastrototaro J (1999) J Pediatr Endocrinol Metab 12:751–758

    PubMed  Google Scholar 

  52. Tierney MJ, Tamada JA, Potts RO, Jovanovic L, Garg S (2001) Biosens Bioelectron 16:621–629

    Google Scholar 

  53. Hintsche R, Neumann G, Dransfeld I Kampfrath G, Hoffmann B, Scheller F (1989) Anal Lett 22:92175–2190

    Google Scholar 

  54. Scheller F, Pfeiffer D, Hintsche R, Dransfeld I, Nentwig J (1989) Biomed Biochim Acta 48:891–896

    CAS  PubMed  Google Scholar 

  55. Thewes R, Hofmann F, Frey A, Holzapfl B, Schienle M, Paulus C, Schindler P, Eckstein G, Kassel C, Stanzel M, Hintsche R, Nebling E, Albers J, Hassmann J, Schülein J, Goemann W, Gumbrecht W (2002) ISSCC Digest of Tech. Papers 350–351 and 472–473

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Hintsche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, J., Grunwald, T., Nebling, E. et al. Electrical biochip technology—a tool for microarrays and continuous monitoring. Anal Bioanal Chem 377, 521–527 (2003). https://doi.org/10.1007/s00216-003-2192-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2192-7

Keywords

Navigation