Skip to main content
Log in

Fractionation using adsorptive macroporous resin HPD-600 enhances antioxidant activity of Gnetum gnemon L. seed hard shell extract

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this study, antioxidant activities and identification of the bioactive substances in Gnetum gnemon L. (Gg) seed hard shell were evaluated. The seed of Gnetum gnemon L., an Indonesian native plant, is commonly consumed as a vegetable or further processed as cracker. Isolated substances from Gnetum gnemon seed are mainly stilbenoid derivatives which show potent antioxidant, tyrosinase inhibitor, and antimicrobial activities. Nevertheless, the antioxidant activity of its crude extract is still considered weak. In this study, an effort was made to improve antioxidant potency by fractionation using macroporous adsorptive resin (MAR). This fractionation successfully enhanced antioxidant activity of red Gg seed hard shell extract with efficient adsorption contact time within 30 min. Antioxidant activity of fractions 25–75% v/v ethanol increased three- to sevenfold as compared to crude extract and more importantly resulted in dry product which was easier for further processes. Identification of bioactive compounds in Gg seed hard shell extract with different degrees of ripeness was also performed by HPLC and confirmed the presence of Gnetin C, resveratrol, and other stilbenoid derivatives. These other stilbenoid derivatives could be the main substances contributing in antioxidant action with lower IC50 as compared to both Gnetin C and resveratrol. In summary, fractionation process using MAR HPD-600 reduced unnecessary sugar molecules from red Gg seed hard shell extract hence resulting to fraction with strong antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badarinath AV, Mallikarjuna RK, Madhu SCC, Ramkanth S, Rajan TVS, Gnanaprakash KA (2010) Review on in-vitro antioxidant methods: comparisons, correlations and considerations. Int J PharmTech Res 2(2):1276–1285

    CAS  Google Scholar 

  • Barua CC, Haloi P, Barua IC (2015) Gnetum gnemon Linn: a comprehensive review on its biological, pharmacological and pharmacognostical potentials. Int J Pharmacogn Phytochem Res 7(3):531–539

    Google Scholar 

  • Büyüktuncel E, Porgalı E, Çolak C (2014) Comparison of total phenolic content and total antioxidant activity in local red wines determined by spectrophotometric methods. Food Nutr Sci 5(5):1660–1667. doi:10.4236/fns.2014.517179

    Article  Google Scholar 

  • Chavan UD, Amarowicz R (2013) Effect of various solvent systems on extraction of phenolics, tannins and sugars from beach pea (Lathyrus maritimus L.). Int Food Res J 20(3):1139–1144

    CAS  Google Scholar 

  • Du H, Wang H, Yu J, Liang C, Ye W, Li P (2012) Enrichment and purification of total flavonoid C-glycosides from Abrus mollis extracts with macroporous resins. Ind Eng Chem Res 51(21):7349–7354. doi:10.1021/ie3004094

    Article  CAS  Google Scholar 

  • Faustino H, Gil N, Baptista C, Duarte AP (2010) Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules 15(12):9308–9322. doi:10.3390/molecules15129308

    Article  CAS  Google Scholar 

  • Fries E, Püttmann W (2002) Analysis of the antioxidant butylated hydroxytoluene (BHT) in water by means of solid phase extraction combined with GC/MS. Water Res 36(9):2319–2327. doi:10.1016/S0043-1354(01)00453-5

    Article  CAS  Google Scholar 

  • Fu Y, Liu W, Hou C, Chen L, Li S, Shi X, Tong M (2007) Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins. J Chromatogr A 1139(2):206–213. doi:10.1016/j.chroma.2006.11.015

    Article  CAS  Google Scholar 

  • Herald TJ, Gadgil P, Tilley M (2012) High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J Sci Food Agric 92:2326–2331. doi:10.1002/jsfa.5633

    Article  CAS  Google Scholar 

  • Javanmardi J, Stushnoff C, Locke E, Vivanco JM (2003) Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem 83(4):547–550. doi:10.1016/S0308-8146(03)00151-1

    Article  CAS  Google Scholar 

  • Kato E, Tokunaga Y, Sakan F (2009) Stilbenoids isolated from the seeds of melinjo (Gnetum gnemon L.) and their biological activity. J Agric Food Chem 57(6):2544–2549. doi:10.1021/jf803077p

    Article  CAS  Google Scholar 

  • Kato H, Samizo M, Kawabata R, Takano F, Ohta T (2011) Stilbenoids from the melinjo (Gnetum gnemon L.) fruit modulate cytokine production in murine peyer’s patch cells ex vivo. Planta Med 77(10):1027–1034. doi:10.1055/s-0030-1250742

    Article  CAS  Google Scholar 

  • Konno H, Kanai Y, Katagiri M, Watanabe T, Mori A, Ikuta T, Tani H, Fukushima S, Tatefuji T, Shirasawa T (2013) Melinjo (Gnetum gnemon L.) seed extract decreases serum uric acid levels in nonobese Japanese males: a randomized controlled study, evidence-based complement. Altern Med 2013:589169. doi:10.1155/2013/589169

    Google Scholar 

  • Li J, Chase AH (2010) Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat Prod Rep 27(10):1493–1510. doi:10.1039/c0np00015a

    Article  CAS  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126. doi:10.4103/0973-7847.70902

    Article  CAS  Google Scholar 

  • Manner HI, Elevitch CR (2006) Gnetum gnemon. Species Profiles for Pacific Island Agroforestry, pp 1–9. http://www.traditionaltree.org. Accessed 5 April 2017

  • Morse EE (1947) Anthrone in estimating low concentrations of sucrose. Anal Chem 19(12):1012–1013. doi:10.1021/ac60012a021

    Article  CAS  Google Scholar 

  • Nishaa S, Vishnupriya M, Sasikumar JM, Hephzibah CP, Gopalakrishnan VK (2012) Antioxidant activity of ethanolic extract of Maranta arundinacea L. tuberous. Asian J Pharm Clin Res 5(4):3–6

    Google Scholar 

  • Nwokocha LM, Williams PA (2011) Comparative study of physicochemical properties of breadfruit (Artocarpus altilis) and white yam starches. Carbohydr Polym 85(2):294–302. doi:10.1016/j.carbpol.2011.01.050

    Article  CAS  Google Scholar 

  • Saraswaty V, Risdian C, Lelono RA, Mozef T (2015) Influence of ethanol concentration and temperature on antioxidant and antibacterial activity from Artocarpus altilis (Parkinson) Fosberg leaves. Oxid Antioxid Med Sci 4(2):97. doi:10.5455/oams.240515.or.086

    Article  Google Scholar 

  • Scherer R, Godoy HT (2009) Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem 112(3):654–658. doi:10.1016/j.foodchem.2008.06.026

    Article  CAS  Google Scholar 

  • Tatefuji T, Yanagihara M, Fukushima S, Hashimoto K (2014) Safety assessment of melinjo (Gnetum gnemon L.) seed extract: acute and subchronic toxicity studies. Food Chem Toxicol 67:230–235. doi:10.1016/j.fct.2014.02.030

    Article  CAS  Google Scholar 

  • Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Comp Anal 19(6):669–675

    Article  CAS  Google Scholar 

  • Tirzitis G, Bartosz G (2010) Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim Pol 57(2):139–142

    CAS  Google Scholar 

  • Valavanidis A, Vlachogianni T (2012) Green chemistry and hazardous organic solvents. Green solvents, replacement and alternative techniques. Green Chemistry-Green Engineering: from Theory to Practice for the Protection of the Environment and Sustainable Development 81–96

  • Wang T, Lu S, Xia Q, Fang Z, Johnson S (2015) Separation and purification of amygdalin from thinned bayberry kernels by macroporous adsorption resins. J Chromatogr B Anal Technol Biomed Life Sci 975:52–58. doi:10.1016/j.jchromb.2014.10.038

    Article  CAS  Google Scholar 

  • Wazir D, Ahmad S, Muse R, Mahmood M, Shukor MY (2011) Antioxidant activities of different parts of Gnetum gnemon L. J Plant Biochem Biotech 20(2):234–240. doi:10.1007/s13562-011-0051-8

    Article  CAS  Google Scholar 

  • Yanagihara M, Yoshimatsu M, Inoue A, Kanno T, Tatefuji T, Hashimoto K (2012) Inhibitory effect of gnetin C, a resveratrol dimer from melinjo (Gnetum gnemon), on tyrosinase activity and melanin biosynthesis. Biol Pharm Bull 35(6):993–996. doi:10.1248/bpb.35.993

    Article  CAS  Google Scholar 

  • Ye F, Yang R, Hua X, Zhao G (2014) Adsorption characteristics of rebaudioside A and stevioside on cross-linked poly(styrene-co-divinylbenzene) macroporous resins functionalized with chloromethyl, amino and phenylboronic acid groups. Food Chem 159:38–46. doi:10.1016/j.foodchem.2014.03.006

    Article  CAS  Google Scholar 

  • Yue D, Yang L, Liu S, Li J, Li W, Ma C (2016) A continuous procedure based on column chromatography to purify anthocyanins from Schisandra chinensis by a macroporous resin plus gel filtration chromatography. Molecules 21(2):204. doi:10.3390/molecules21020204

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by Ministry of Research Technology and Higher Education of Republic of Indonesia, under scheme of Consortium of Incentive of National Innovation System Research, year 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heni Rachmawati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswaty, V., Ketut Adnyana, I., Pudjiraharti, S. et al. Fractionation using adsorptive macroporous resin HPD-600 enhances antioxidant activity of Gnetum gnemon L. seed hard shell extract. J Food Sci Technol 54, 3349–3357 (2017). https://doi.org/10.1007/s13197-017-2793-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2793-3

Keywords

Navigation