Journal of Physiology and Biochemistry

, Volume 68, Issue 4, pp 671–681 | Cite as

Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice

  • Thomas Larrieu
  • Charlotte Madore
  • Corinne Joffre
  • Sophie LayéEmail author
Original Paper


N-3 polyunsaturated fatty acids (PUFAs) cannot be synthesized de novo in mammals and need to be provided by dietary means. In the brain, the main n-3 PUFA is docosahexaenoic acid (DHA), which is a key component of neuronal membranes. A low dietary level of DHA has been associated with increased risk of developing neuropsychiatric diseases; however, the mechanisms involved remain to be determined. In this study, we found that long-term exposure to an n-3 deficient diet decreases the level of DHA in the brain and impairs the cannabinoid receptor signaling pathway in mood-controlling structures. In n-3 deficient mice, the effect of the cannabinoid agonist WIN55,212-2 in an anxiety-like behavior test was abolished. In addition, the cannabinoid receptor signaling pathways were altered in the prefrontal cortex and the hypothalamus. Consequently, our data suggest that behavioral changes linked to an n-3 dietary deficiency are due to an alteration in the endocannabinoid system in specific brain areas.


CB1 DHA Anxiety MAPK Endocannabinoid 



This study was financially supported by INRA, FRM, and the Région Aquitaine. T.L. received stipend from ANR and CM from the Ministry of French Research. The authors thank P. Birac, C. Tridon, and M. Cadet for taking care of the mice and V. DeSmedt and C. Vaysse (ITERG, Pessac, France) for helpful support.


  1. 1.
    Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10(4):345–352PubMedCrossRefGoogle Scholar
  2. 2.
    Bouaboula M, Bourrie B, Rinaldi-Carmona M, Shire D, Le Fur G, Casellas P (1995) Stimulation of cannabinoid receptor CB1 induces krox-24 expression in human astrocytoma cells. J Biol Chem 270(23):13973–13980PubMedCrossRefGoogle Scholar
  3. 3.
    Bouaboula M, Poinot-Chazel C, Bourrie B, Canat X, Calandra B, Rinaldi-Carmona M, Le Fur G, Casellas P (1995) Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J 312(Pt 2):637–641PubMedGoogle Scholar
  4. 4.
    Cao D, Kevala K, Kim J, Moon HS, Jun SB, Lovinger D, Kim HY (2009) Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function. J Neurochem 111(2):510–521PubMedCrossRefGoogle Scholar
  5. 5.
    Carrie I, Clement M, de Javel D, Frances H, Bourre JM (2000) Specific phospholipid fatty acid composition of brain regions in mice. Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J Lipid Res 41(3):465–472PubMedGoogle Scholar
  6. 6.
    Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75(4–5):259–269PubMedCrossRefGoogle Scholar
  7. 7.
    Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, LaPlant Q, Mouzon E, Ghose S, Tamminga CA, Neve RL, Deisseroth K, Nestler EJ (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30(48):16082–16090PubMedCrossRefGoogle Scholar
  8. 8.
    DeMar JC Jr, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI (2006) One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 47(1):172–180PubMedCrossRefGoogle Scholar
  9. 9.
    Derkinderen P, Valjent E, Toutant M, Corvol JC, Enslen H, Ledent C, Trzaskos J, Caboche J, Girault JA (2003) Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci 23(6):2371–2382PubMedGoogle Scholar
  10. 10.
    Fedorova I, Hussein N, Di Martino C, Moriguchi T, Hoshiba J, Majchrzak S, Salem N Jr (2007) An n-3 fatty acid deficient diet affects mouse spatial learning in the Barnes circular maze. Prostaglandins Leukot Essent Fatty Acids 77(5–6):269–277PubMedCrossRefGoogle Scholar
  11. 11.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  12. 12.
    Hibbeln JR (1998) Fish consumption and major depression. Lancet 351(9110):1213PubMedCrossRefGoogle Scholar
  13. 13.
    Hill MN, Gorzalka BB (2009) The endocannabinoid system and the treatment of mood and anxiety disorders. CNS Neurol Disord Drug Targets 8(6):451–458PubMedCrossRefGoogle Scholar
  14. 14.
    Hill MN, Hillard CJ, McEwen BS (2011) Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the effects of chronic stress. Cereb Cortex 21(9):2056–2064PubMedCrossRefGoogle Scholar
  15. 15.
    Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, Halver JE, Puskas LG (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 101(30):10931–10936PubMedCrossRefGoogle Scholar
  16. 16.
    Lafourcade M, Larrieu T, Mato S, Duffaud A, Sepers M, Matias I, De Smedt-Peyrusse V, Labrousse VF, Bretillon L, Matute C, Rodriguez-Puertas R, Laye S, Manzoni OJ (2011) Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 14(3):345–350PubMedCrossRefGoogle Scholar
  17. 17.
    Levant B, Ozias MK, Carlson SE (2007) Specific brain regions of female rats are differentially depleted of docosahexaenoic acid by reproductive activity and an (n-3) fatty acid-deficient diet. J Nutr 137(1):130–134PubMedGoogle Scholar
  18. 18.
    Lutz B (2009) Endocannabinoid signals in the control of emotion. Curr Opin Pharmacol 9(1):46–52PubMedCrossRefGoogle Scholar
  19. 19.
    McNamara RK (2010) DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders. J Nutr 140(4):864–868PubMedCrossRefGoogle Scholar
  20. 20.
    Mingam R, Moranis A, Bluthe RM, De Smedt-Peyrusse V, Kelley KW, Guesnet P, Lavialle M, Dantzer R, Laye S (2008) Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice. Eur J Neurosci 28(9):1877–1886PubMedCrossRefGoogle Scholar
  21. 21.
    Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, Parada LF, Nestler EJ (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 61(2):187–197PubMedCrossRefGoogle Scholar
  22. 22.
    Moranis A, Delpech JC, De Smedt-Peyrusse V, Aubert A, Guesnet P, Lavialle M, Joffre C, Laye S (2011) Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice. Brain Behav ImmunGoogle Scholar
  23. 23.
    Moriguchi T, Greiner RS, Salem N Jr (2000) Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem 75(6):2563–2573PubMedCrossRefGoogle Scholar
  24. 24.
    Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5:600–608PubMedGoogle Scholar
  25. 25.
    Rao JS, Ertley RN, Lee HJ, DeMar JC Jr, Arnold JT, Rapoport SI, Bazinet RP (2007) n-3 Polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 12(1):36–46PubMedCrossRefGoogle Scholar
  26. 26.
    Rodgers RJ, Evans PM, Murphy A (2005) Anxiogenic profile of AM-251, a selective cannabinoid CB1 receptor antagonist, in plus-maze-naive and plus-maze-experienced mice. Behav Pharmacol 16(5–6):405–413PubMedCrossRefGoogle Scholar
  27. 27.
    Salem N Jr, Litman B, Kim HY, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36(9):945–959PubMedCrossRefGoogle Scholar
  28. 28.
    Shepherd JD, Bear MF (2011) New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci 14(3):279–284PubMedCrossRefGoogle Scholar
  29. 29.
    Simopoulos AP (2000) Human requirement for N-3 polyunsaturated fatty acids. Poult Sci 79(7):961–970PubMedGoogle Scholar
  30. 30.
    Sinclair AJ (1975) Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10(3):175–184PubMedCrossRefGoogle Scholar
  31. 31.
    Steiner MA, Wanisch K, Monory K, Marsicano G, Borroni E, Bachli H, Holsboer F, Lutz B, Wotjak CT (2008) Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. Pharmacogenomics J 8(3):196–208PubMedCrossRefGoogle Scholar
  32. 32.
    Wartmann M, Campbell D, Subramanian A, Burstein SH, Davis RJ (1995) The MAP kinase signal transduction pathway is activated by the endogenous cannabinoid anandamide. FEBS Lett 359(2–3):133–136PubMedCrossRefGoogle Scholar
  33. 33.
    Watanabe S, Doshi M, Hamazaki T (2003) n-3 Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice. Prostaglandins Leukot Essent Fatty Acids 69(1):51–59PubMedCrossRefGoogle Scholar

Copyright information

© University of Navarra 2012

Authors and Affiliations

  • Thomas Larrieu
    • 1
    • 2
  • Charlotte Madore
    • 1
    • 2
  • Corinne Joffre
    • 1
    • 2
  • Sophie Layé
    • 1
    • 2
    Email author
  1. 1.Nutrition et Neurobiologie IntégréeINRA UMR 1286Bordeaux CedexFrance
  2. 2.University of BordeauxBordeauxFrance

Personalised recommendations