Skip to main content
Log in

Synthesis, Properties and Antibacterial Activity of the Composites Based on Glauconite

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Copper nanoparticles (by reduction “in situ” of a copper ammonium complex ion) and tetracycline-based glauconite composites have been synthesized. Physico-chemical properties of both composites have been investigated. Solid immobilization of the tetracycline ions on the glauconite surface (chemisorption) is observed. Sorption parameters such as the sorbtion capacity, recovery rate, and sorbtion time of tetracycline glauconite were evaluated. Copper nanoparticles are intercalated in glauconite-matrix (3–7 nm) and adsorbed by surface of mineral (30–50 nm). Excellent antibacterial activity of the composites were observed on Staphylococcus aureus and Escherichia coli (mortality rate is ~100% after 3–6 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Venig, S. B., Serjantov, V. G., Chernova, R. K., Doronin, S. Y., Selifonova, E. I., Zaharevich, A. M., & Soldatenko, E. M. (2014). Glauconite of Saratov region, properties, composites based on it, the application. Butlerov Communications, 39(8), 17–26.2.

    Google Scholar 

  2. Avisar, D., Primor, O., Gozlan, I., & Mamane, H. (2010). Sorption of sulfonamides and tetracyclines to montmorillonite clay. Water, Air, & Soil Pollution, 209(1), 439–450.

    Article  Google Scholar 

  3. Wang, J., Hu, J., & Zhang, S. (2010). Studies on the sorption of tetracycline onto clays and marine sediment from seawater. Journal of Colloid and Interface Science, 349(2), 578–582.

    Article  Google Scholar 

  4. Berger, T. J., Spadaro, J. A., Chapin, S. E., & Becker, R. O. (1976). Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrobial Agents and Chemotherapy, 9(2), 357–358.

    Article  Google Scholar 

  5. Domek, M. J., LeChevallier, M. W., Cameron, S. C., & McFeters, G. A. (1984). Evidence for the role of copper in the injury process of coli form bacteria in drinking water. Applied and Environmental Microbiology, 48(2), 289–293.

    Google Scholar 

  6. Ohashi, F., Oya, A., Duclaux, L., & Beguin, F. (1998). Structural model calculation of antimicrobial agents derived from clay minerals. Applied Clay Science, 12, 435–445.

    Article  Google Scholar 

  7. Marini, M., Bondi, M., Iseppi, R., Toselli, Z., & Pilati, F. (2007). Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via sol-gel process. European Polymer Journal, 43, 3621–3628.

    Article  Google Scholar 

  8. Gant, V. A., Wren, M. W. D., Rollins, M. S. M., Jeanes, A., Hickok, S. S., & Hall, T. J. (2007). Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms. The Journal of Antimicrobial Chemotherapy, 60, 294–299.

    Article  Google Scholar 

  9. Li, B., Yu, S., Hwang, J. Y., & Shi, S. (2002). Antibacterial vermiculite nano-material. Journal of Minerals and Materials Characterization and Engineering, 1(1), 61–68.

    Google Scholar 

  10. Zhou, Y., Xia, M., Ye, Y., & Hu, C. (2004). Antimicrobial ability of Cu2+-montmorillonite. Applied Clay Science, 27(3–4), 215–218.

    Article  Google Scholar 

  11. Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590.

    Article  Google Scholar 

  12. Kanninen, P., Johans, C., Merta, J., & Kontturi, K. (2008). Influence of ligand structure on the stability and oxidation of copper nanoparticles. Journal of Colloid and Interface Science, 318(1), 88–95.

    Article  Google Scholar 

  13. Lanone, S., & Boczkowski, J. (2006). Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Current Molecular Medicine, 6(6), 651–663.

    Article  Google Scholar 

  14. Dekany, I., & Patakfalvi, R. (2004). Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes. Applied Clay Science, 25(3–4), 149–159.

    Google Scholar 

  15. (2010). Applied chemical analysis: a practical guide. Ed. TN Shekhovtsovа, Moscow: MSU, 1–456.

  16. Vaseem, M., Lee, K. M., Kim, D. Y., & Hahn, Y.-B. (2011). Parametric study of cost-effective synthesis of crystalline copper nanoparticles and their crystallographic characterization. Materials Chemistry and Physics, 125(3), 334–341.

    Article  Google Scholar 

  17. Bagchi, B., Kar, S., Dey, S. K., Bhandary, S., Roy, D., Mukhopadhyay, T. K., Das, S., & Nandy, P. (2013). In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids and Surfaces. B, Biointerfaces, 108, 358–365.

    Article  Google Scholar 

  18. Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12(18), 2163–2175.

    Article  Google Scholar 

  19. Walker, S. G., Flemming, C. A., Ferris, F. G., Beveridge, T. J., & Bailey, G. W. (1989). Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Applied and Environmental Microbiology, 55(11), 2976–2984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena M. Soldatenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venig, S.B., Chernova, R.K., Doronin, S.Y. et al. Synthesis, Properties and Antibacterial Activity of the Composites Based on Glauconite. BioNanoSci. 7, 659–665 (2017). https://doi.org/10.1007/s12668-017-0409-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0409-z

Keywords

Navigation