Skip to main content
Log in

Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The current study investigated the sorption of sulfadimethoxine (SMT), sulfamethoxazole (SMX), tetracycline (TET), and oxytetracycline (OTC) to Na-rich montmorillonite clay in synthetic effluent (SE) and field wastewater effluent (FE). Both SMT and SMX showed a low sorption capacity and are therefore likely to be highly mobile in the environment, while the sorption of TET to clay in environmental pH range (6.5–7.5) showed similarly high adsorption capacity. Differences in sorption capacities of TET and OTC to SE or FE were attributed to the various concentrations of divalent cations in the effluents. In addition, differences in sorption of OTC or TET to SE were attributed to their different molecular structure. Moreover, the adsorption of TET in SE and FE showed linear adsorption isotherms and fitted to Freundlich model. Further experiments showed that addition of humic acid or SE to TET sorbed to clay did not enhance or suppress the sorption of TET to clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Avisar, D., Lester, Y., & Ronen, D. (2009a). Sulfamethoxazole detected in a deep phreatic aquifer beneath effluent irrigated land. Science of the Total Environment, 407, 4278–4282.

    Article  CAS  Google Scholar 

  • Avisar, D., Levin, G., & Gozlan, I. (2009b). The occurrence of oxytetracycline (OTC) in local groundwater beneath fish pond. Earth and environmental sciences. doi:10.1007/s12665-009-0088-3.

  • Boxall, A. B. A., Blackwell, P., Cavallo, R., Kay, P., & Tolls, J. (2002). The sorption and transport of a sulphonamides antibiotic in soil systems. Toxicology Letters, 131, 19–28.

    Article  CAS  Google Scholar 

  • Carrasquillo, A. J., Bruland, G. L., MacKay, A. A., & Vasudevan, D. (2008). Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 42(20), 7634–7642.

    Article  CAS  Google Scholar 

  • Essington, M. E. (2004). Soil and Water Chemistry. Boca Raton: CRC.

    Google Scholar 

  • Figueroa, R. A., Leonard, A., & Mackay, A. A. (2004). Modeling tetracycline antibiotic sorption in clays. Environmental Science & Technology, 38, 476–483.

    Article  CAS  Google Scholar 

  • Golet, E. M., Alder, A. C., Hartmann, A., Ternes, T. A., & Giger, W. (2001). Trace determination of fluoroquinolone antibacterial agents urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection. Analytical Chemistry, 73, 3632–3638.

    Article  CAS  Google Scholar 

  • Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C., & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 37, 3243–3249.

    Article  CAS  Google Scholar 

  • Gu, C., Karthikeyan, K. G., Sibley, S. D., & Pedersen, J. A. (2007). Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 66, 1494–1501.

    Article  CAS  Google Scholar 

  • Hamscher, G., Sczensny, S., Hoper, H., & Nau, H. (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74, 1509–1518.

    Article  CAS  Google Scholar 

  • Hamscher, G., Pawelzick, T. H., Höper, H., & Nau, H. (2005). Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environmental Toxicology and Chemistry, 24, 861–868.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266, 175–189.

    Article  CAS  Google Scholar 

  • Hirsch, R., Ternes, T. A., Haberer, K., & Kratz, K. L. (1999). Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 225, 109–118.

    Article  CAS  Google Scholar 

  • Hui, L., Sheng, G., Teppen, B. J., Johnston, C. T., Boyd, S. A. (2003). Sorption and desorption of pesticides by clay minerals and humic acid-clay complexes. Soil Science Society of America Journal, 67, 122–131.

    Google Scholar 

  • Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 361, 196–207.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.

    Article  CAS  Google Scholar 

  • Kulshrestha, P., Rossman, F. G., Jr., & Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environmental Science & Technology, 38, 4097–4105.

    Article  CAS  Google Scholar 

  • Langhammer, J. P. (1989). Untersuchungen zum Verbleib antimikrobiell wirksamer Arzneistoffe als Ru¨cksta¨nde in Gu¨ lle und im landwirtschaflichen Umfeld. PhD thesis, Rheinische Friedrich-Wilhelms-Universita¨t, Bonn.

  • Lindsey, M. E., Meyer, M., & Thurman, E. M. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73, 4640–4646.

    Article  CAS  Google Scholar 

  • Loke, M. L., Tjørnelund, J., & Halling-Sørensen, B. (2002). Determination of the distribution coefficient (log K d) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 48, 351–361.

    Article  CAS  Google Scholar 

  • McCarthy, J. F., & Zachara, J. M. (1989). Subsurface transport of contaminants—Mobile colloids in the subsurface environment may alter the transport of contaminants. Environmental Science and Technology, 23, 496–502.

    CAS  Google Scholar 

  • Metcalf and Eddy (2004). Wastewater engineering treatment and reuse (4th ed.). New York: Mc-Graw Hill.

    Google Scholar 

  • Murphy, E. M., Zachara, J. M., Smith, S. C., Phillips, J. L., & Wletsma, T. W. (1994). Interaction of hydrophobic organic compounds with mineral bound humic substances. Environmental Science and Technology, 28, 1291–1299.

    Article  CAS  Google Scholar 

  • Oka, H. I., & Matsumoto, H. (2000). Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography, A882, 109–133.

    Google Scholar 

  • Parolo, M. E., Savini, M. C., Vallés, J. M., Baschini, M. T., & Avena, M. G. (2008). Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Applied Clay Science, 40, 179–186.

    Article  CAS  Google Scholar 

  • Rabolle, M., & Spliid, N. H. (2000). Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40, 715–722.

    Article  CAS  Google Scholar 

  • Sacher, F., Lange, F. T. H., Brauch, H. J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters. Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. Journal of Chromatography A, 938, 199–210.

    Article  CAS  Google Scholar 

  • Sassman, S., & Lee, L. S. (2005). Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 39, 7452–7459.

    Article  CAS  Google Scholar 

  • Schulten, M., & Schnitzer, H. R. (1997). Chemical model structures for soil organic matter and soils. Soil Science, 162, 115–130.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2002). Environmental organic chemistry. New York: Wiley.

    Book  Google Scholar 

  • Sithole, B. B., & Guy, R. D. (1987). Models for tetracycline in aquatic environments. I. Interaction with bentonite clay systems. Water, Air and Soil Pollution, 32, 303–314.

    Article  CAS  Google Scholar 

  • Smith, J., Vigneswaran, S., Ngo, H., Ben-Aim, R., & Nguyen, H. (2005). Design of a generic control system for optimising back flush durations in a submerged membrane hybrid reactor. Journal of Membrane Science, 255, 99–106.

    Article  CAS  Google Scholar 

  • Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: The new view. Environmental Science & Technology, 39, 9009–9015.

    Article  CAS  Google Scholar 

  • Ter Laak, T. L., Gebbink, W., & Tolls, J. (2006). The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environmental Toxicology & Chemistry, 25(4), 904–911.

    Article  Google Scholar 

  • Thiele, S. (2000). Adsorption of the antibiotic pharmaceutical compound sulfapyridine by long-term differently fertilized chernozem. Journal of Plant Nutrition and Soil Science, 163, 589–594.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn, S. (2003). Pharmaceutical antibiotics compounds in soils a review. Journal of Plant Nutrition and Soil Science, 166, 145–167.

    Article  CAS  Google Scholar 

  • Thiele-Bruhn, S., Seibicke, T., Schulten, H. R., & Leinweber, P. (2004). Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. Journal of Environmental Quality, 33(4), 1331–1342.

    Article  CAS  Google Scholar 

  • Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: A review. Environmental Science and Technology, 2001(35), 3397–3406.

    Article  CAS  Google Scholar 

  • Zwiener, C., & Frimmel, F. H. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34, 1881–1885.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Porter School for Environmental Studies (PSES) at Tel-Aviv University for their financial support and Professor Giora Rytwo for his essential comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Avisar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avisar, D., Primor, O., Gozlan, I. et al. Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay. Water Air Soil Pollut 209, 439–450 (2010). https://doi.org/10.1007/s11270-009-0212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0212-8

Keywords

Navigation