Skip to main content
Log in

Membrane-Mediated Inter-Domain Interactions

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The amazing ability of living cells in achieving strict and robust control of their membrane morphologies and functions over different length scales leads to the concept that membrane domains, such as lipid rafts, are the basic organization units of cellular membranes. Yet fundamental understanding of the membrane-mediated inter-domain interaction still remains incomplete. In the present work, we probe inter-domain interactions by performing coarse-grained molecular dynamics simulations using a highly coarse-grained implicit-solvent fluid membrane model. Our simulations show that the membrane-mediated inter-domain interaction remains repulsive for the contact angle as large as close to 90°. The repulsive interaction force between curved domains increases with the domain curvature and hinders the further domain coalescence. Our findings have broad implications to various biological phenomena such as lipid raft formation, viral budding, and targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Edidin, M. (2003). The state of lipid rafts: from model membranes to cells. Annual Review of Biophysics and Biomolecular Structure, 32, 257–283.

    Article  Google Scholar 

  2. Pike, L. J. (2006). Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. Journal of Lipid Research, 47(7), 1597–1598.

    Article  Google Scholar 

  3. Yethiraj, A., & Weisshaar, J. C. (2007). Why are lipid rafts not observed in vivo? Biophysical Journal, 93(9), 3113–3119.

    Article  Google Scholar 

  4. Baumgart, T., Hess, S. T., & Webb, W. W. (2003). Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature, 425(6960), 821–824.

    Article  Google Scholar 

  5. Garcia-Saez, A. J., Chiantia, S., & Schwille, P. (2007). Effect of line tension on the lateral organization of lipid membranes. Journal of Biological Chemistry, 282(46), 8.

    Article  Google Scholar 

  6. Rietveld, A., & Simons, K. (1998). The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1376(3), 467–479.

    Article  Google Scholar 

  7. Yanagisawa, M., Imai, M., Masui, T., Komura, S., & Ohta, T. (2007). Growth dynamics of domains in ternary fluid vesicles. Biophysical Journal, 92(1), 115–125.

    Article  Google Scholar 

  8. Rozovsky, S., Kaizuka, Y., & Groves, J. T. (2004). Formation and spatio-temporal evolution of periodic structures in lipid bilayers. Journal of the American Chemical Society, 127(1), 36–37.

    Article  Google Scholar 

  9. Semrau, S., Idema, T., Schmidt, T., & Storm, C. (2009). Membrane-mediated interactions measured using membrane domains. Biophysical Journal, 96(12), 4906–4915.

    Article  Google Scholar 

  10. Goulian, M., Bruinsma, R., & Pincus, P. (1993). Long-range forces in heterogeneous fluid membranes. Europhysics Letters, 22(2), 145–150.

    Article  Google Scholar 

  11. Weikl, T. R., Kozlov, M. M., & Helfrich, W. (1998). Interaction of conical membrane inclusions: effect of lateral tension. Physical Review E, 57(6), 6988–6995.

    Article  Google Scholar 

  12. Kim, K. S., Neu, J., & Oster, G. (1998). Curvature-mediated interactions between membrane proteins. Biophysical Journal, 75(5), 2274–2291.

    Article  Google Scholar 

  13. Ursell, T. S., Klug, W. S., & Phillips, R. (2009). Morphology and interaction between lipid domains. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13301–13306.

    Article  Google Scholar 

  14. Reynwar, B. J., Illya, G., Harmandaris, V. A., Muller, M. M., Kremer, K., & Deserno, M. (2007). Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature, 447(7143), 461–464.

    Article  Google Scholar 

  15. Yuan, H., Huang, C., Li, J., Lykotrafitis, G., & Zhang, S. (2010). One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes. Physical Review E, 82(1), 011905.

    Article  Google Scholar 

  16. Yuan, H., Huang, C., & Zhang, S. (2010). Dynamic shape transformations of fluid vesicles. Soft Matter, 6, 4571–4579.

    Article  Google Scholar 

  17. Huang, X., Yuan, H., Hsia, K. J., & Zhang, S. (2010). Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Research, 3(1), 32–42.

    Article  Google Scholar 

  18. Huang, X., Yuan, H., Liang, W., & Zhang, S. (2010). Mechanical properties and deformation morphologies of covalently bridged multi-walled carbon nanotubes: multiscale modeling. Journal of the Mechanics and Physics of Solids, 58, 1847–1862.

    Article  Google Scholar 

  19. Ou-Yang, Z.-C., Liu, J.-X., & Xie, Y.-Z. (1999). In Y.-B. Dai, B.-L. Hao, & Z.-B. Su (Eds.), Geometric methods in the elastic theory of membranes in liquid crystal phases (Advanced Series on Theoretical Physical Science). Singapore: World Scientific Publishing Company.

    Chapter  Google Scholar 

  20. Atilgan, E., & Sun, S. X. (2007). Shape transitions in lipid membranes and protein mediated vesicle fusion and fission. Journal of Chemical Physics, 126(9), 095102.

    Article  Google Scholar 

  21. Feng, F., & Klug, W. S. (2006). Finite element modeling of lipid bilayer membranes. Journal of Computational Physics, 220(1), 394–408.

    Article  MathSciNet  MATH  Google Scholar 

  22. Brannigan, G., & Brown, F. L. H. (2004). Solvent-free simulations of fluid membrane bilayers. Journal of Chemical Physics, 120(2), 1059–1071.

    Article  Google Scholar 

  23. Ballone, P., & Del Popolo, M. G. (2006). Simple models of complex aggregation: vesicle formation by soft repulsive spheres with dipolelike interactions. Physical Review E, 73(3), 031404.

    Article  Google Scholar 

  24. Kohyama, T. (2009). Simulations of flexible membranes using a coarse-grained particle-based model with spontaneous curvature variables. Physica A: Statistical Mechanics and Its Applications, 388(17), 3334–3344.

    Article  Google Scholar 

  25. Drouffe, J. M., Maggs, A. C., & Leibler, S. (1991). Computer simulations of self-assembled membranes. Science, 254(5036), 1353–1356.

    Article  Google Scholar 

  26. Huang, C., Yuan, H., & Zhang, S. (2011). Coupled vesicle morphogenesis and domain organization. Applied Physics Letters, 98(4), 043702.

    Article  Google Scholar 

  27. Blood, P. D., & Voth, G. A. (2006). Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 103(41), 15068–15072.

    Article  Google Scholar 

  28. Jülicher, F., & Lipowsky, R. (1996). Shape transformations of vesicles with intramembrane domains. Physical Review E, 53(3), 2670.

    Article  Google Scholar 

  29. Allen, J. A., Halverson-Tamboli, R. A., & Rasenick, M. M. (2007). Lipid raft microdomains and neurotransmitter signalling. Nature Reviews Neuroscience, 8(2), 128–140.

    Article  Google Scholar 

  30. Arkhipov, A., Yin, Y., & Schulten, K. (2008). Four-scale description of membrane sculpting by BAR domains. Biophysical Journal, 95(6), 2806–2821.

    Article  Google Scholar 

  31. Kumar, P. B. S., Gompper, G., & Lipowsky, R. (2001). Budding dynamics of multicomponent membranes. Physical Review Letters, 86(17), 3911–3914.

    Article  Google Scholar 

  32. Laradji, M., & Sunil Kumar, P. B. (2004). Dynamics of domain growth in self-assembled fluid vesicles. Physical Review Letters, 93(19), 198105.

    Article  Google Scholar 

  33. Laradji, M., & Kumar, P. B. (2006). Anomalously slow domain growth in fluid membranes with asymmetric transbilayer lipid distribution. Physical Review E, 73, 040901.

    Article  Google Scholar 

  34. Jensen, M. H., Morris, E. J., & Simonsen, A. C. (2007). Domain shapes, coarsening, and random patterns in ternary membranes. Langmuir, 23(15), 8135–8141.

    Article  Google Scholar 

  35. Saffman, P. G., & Delbruck, M. (1975). Brownian motion in biological membranes. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 3111–3113.

    Article  Google Scholar 

  36. Gambin, Y., Lopez-Esparza, R., Reffay, M., Sierecki, E., Gov, N. S., Genest, M., et al. (2006). Lateral mobility of proteins in liquid membranes revisited. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2098–2102.

    Article  Google Scholar 

  37. Guigas, G., & Weiss, M. (2006). Size-dependent diffusion of membrane inclusions. Biophysical Journal, 91(7), 2393–2398.

    Article  Google Scholar 

  38. Pralle, A., Keller, P., Florin, E. L., Simons, K., & Horber, J. K. H. (2000). Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. The Journal of Cell Biology, 148(5), 997–1007.

    Article  Google Scholar 

Download references

Acknowledgment

We thank financial support from the National Science Foundation under grant no. CMMI-0826841.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, H., Huang, C. & Zhang, S. Membrane-Mediated Inter-Domain Interactions. BioNanoSci. 1, 97–102 (2011). https://doi.org/10.1007/s12668-011-0011-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0011-8

Keywords

Navigation