Skip to main content

Advertisement

Log in

Geochemical modeling and low-frequency geoelectrical methods to evaluate the impact of an open dump in arid and deltaic environments

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In Mexico, open dumps that are maintained by the municipality but provide no covering of waste are not uncommon. Further, disposal at these sites is often performed by burning. The aim of this study was to determine the leachate plume from an open dump located in a depositional deltaic environment, with arid climate, low rainfall and where the water table is about 2 m below the surface. The methodology comprised analysis of groundwater monitoring wells and geophysical and geochemical prospecting techniques. The 3D geoelectric interpretation shows a typical area of these depositional environments with low resistive values (10–20 Ω-m) associated with the presence of sands and clays interbedded. However, there is a very low resistivity zone associated with the dump’s impact which reaches values below 5 Ω-m, and it is located where the disposal and burning of wastes occurred. Another zone with values above 16 Ω-m appears as a limit for the advance of the saline. This is interpreted as a sandy lenses area. These sandy lenses with higher porosity transport aquifer’s water. Thus the dump is in direct contact by this conduct with clean groundwater. Piper diagrams constructed with the chemical data analysis reveal that the groundwater in the area corresponds to the chlorinated and/or sulfated sodium type, showing the impact caused by the dump. The monitoring well (NP8, on-site) with the highest dissolved solids content behaves anomalously and belongs to the more conductive zone according to the geoelectric profiles. The subsoil geochemical behavior is influenced by the seasonal water table variations provoking the dissolution of burned and unburned wastes, but the effects of slow flows in the direction of the regional flow are not discarded. Although the most impacted area within the dump is characterized to a depth of 10 m, there is a slow flow in the direction of the regional flow that has been moving pollutants out of the dumpsite during its almost 20 years of operation. The results of this study provide valuable information for the authorities to carry out an appropriate restoration project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Advanced Geosciences Incorporated (2009) Instruction Manual for EarthImager 2D Version 2.4.0. Resistivity and IP Inversion Software. Advanced Geoscience Inc., Austin, Texas

  • Aiuppa A, Federico C, Allard P, Gurrieri S, Valenza M (2005) Trace metal modeling groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chem Geol 216:289–311

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. A.A. Balkema, Leiden

    Book  Google Scholar 

  • Aristodemu E, Thomas-Betts A (2000) DC resistivity and induced polarisation investigations at a waste disposal site and its environments. J Appl Geophys 44:275–302

    Article  Google Scholar 

  • Atencio-Pérez RM (2011) Evaluación de Riesgo Ambiental en Sitios Contaminados en el Valle de Mexicali, B.C. Caso de Estudio Basurero Vado Carranza/Environmental Risk Assessment of contaminated sites in Mexicali Valley, B.C. Study case Vado Carranza open dump. Dissertation, Autonomous University of Baja California, UABC

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  Google Scholar 

  • Custodio E, Llamas MR (1983) Hidrología subterránea 2da Edición. ed Omega, Barcelona

    Google Scholar 

  • DOF (Diario Oficial de la Federación/The Official Gazette of the Federation) (2003) Ley General para la Prevención y Gestión Integral de los Residuos/General Law for prevention and integrated wastes management. http://www.semarnat.gob.mx/leyes-y-normas/leyes-federales. Accessed 01 Jan 2014

  • Ehrig HJ (1988) Water and element balances of landfills. In: Baccini P (ed) The landfill, vol 20. Springer, Berlin, pp 83–116

    Chapter  Google Scholar 

  • Ettler V, Zelena O, Mihaljevic M, Sebek O, Strnad L, Coufal P, Bezdicka P (2006) Removal of trace elements from landfill leachate by calcite precipitation. J Geochem Explor 88(1–3):28–31

    Article  Google Scholar 

  • Fetter CW (1993) Contaminant hydrogeology. Macmillan, New York

    Google Scholar 

  • Frid V, Liskevich G, Doudkinski D, Korostishevsky N (2008) Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environ Geol 53:1503–1508

    Article  Google Scholar 

  • Gallas JDF, Taioli F, Filho WM (2011) Induced polarization, resistivity, and self-potential: a casa history of contamination evaluation due to landfill leakage. Environ Earth Sci 63:251–261

    Article  Google Scholar 

  • Garduño-Palomino K, Ojeda-Benitez S, Armijo de Vega C (2012) Caracterización de residuos sólidos generados por el sector comercial de Mexicali, B.C./Solid wastes characterization by the commercial sector of Mexicali, B.C. Rev Int Contam Ambie 28(1):19–25

    Google Scholar 

  • Glenn EP, Tanner R, Mendez S, Kehret T, Moore D, García J, Valdes-Casillas C (1998) Growth rates, salt tolerance and water use characteristics of native and invasive riparian plants from the Delta of The Colorado River, México. J Arid Environ 40:281–294

    Article  Google Scholar 

  • Gómez-Puentes FJ (2010) Evaluación de metales pesados en suelo y agua subterránea en un tiradero a cielo abierto en el Valle de Mexicali, B.C./Soil and groundwater heavy metals evaluation in a open dump located in Mexicali Valley, B.C. Dissertation, Autonomous University of Baja California, UABC

  • Gómez-Puentes FJ, Reyes-López JA, López DL, Carreón-Diazconti C, Belmonte-Jiménez S (2013) Geochemical processes controlling the groundwater transport of contaminants released by a dump in an arid region of Mexico. Environ Earth Sci. doi:10.1007/s12665-013-2456-2

    Google Scholar 

  • Guerin R, Munoz ML, Christophe A, Laperrelle C, Hidra M, Drouart E, Grellier S (2004) Leachate recirculation: moisture content assessment by means of a geophysical technique. Waste Manag 24:785–794

    Article  Google Scholar 

  • Halim CE, Short SA, Scott JA, Amal R, Low G (2005) Modelling the leaching of Pb, Cd, As, Cr from cementitious waste using PHREEQC. J Hazard Mater 125(1–3):45–61

    Article  Google Scholar 

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática/National Institute of Statistical, Geography and Informatics) (2001) Síntesis de información geográfica del estado de Baja California (1 ed.)/Synthesis of geographic information of the Baja California state (1 ed.). INEGI, México.http://www3.inegi.org.mx/sistemas/biblioteca/ficha.aspx?upc=702825223854. Accessed 29 june 2016

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática/National Institute of Statistical, Geography and Informatics) (2005) Anuario estadístico de México/Statistical yearbook of Mexico. INEGI, México. http://www3.inegi.org.mx/sistemas/biblioteca/ficha.aspx?upc=702825160173. Accessed 29 june 2016

  • Kale SS, Kadam AK, Kumar S, Pawar NJ (2010) Evaluating pollution potential of leachate from landfill site from the Pune metropolitan city and its impact on shallow basaltic aquifers. Environ Monit Assess 162(1–4):327–346. doi:10.1007/s10661-009-0799-7

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2). A computer program for speciation, batch reaction, one-dimensional transport and inverse calculations. http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/prheeqc/html/final.html. Accessed 20 Sept 2011

  • Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surveys Geophys 23:101–132

    Article  Google Scholar 

  • Pérez-Flores MA, Méndez-Delgado S, Gómez-Treviño E (2001) Imaging low-frequency and DC electromagnetic fields using a simple linear approximation. Geophysics 66 SPECIAL SECTION:1067–1081. doi:10.1190/1.1487054

    Article  Google Scholar 

  • Pough FH (1988) Rocks and minerals. The Peterson field guide series. Houghton Mifflin, New York

    Google Scholar 

  • Revil A, Karaoulis M, Johnson T, Kemna A (2012) Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20(4):617–658

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. West Sussex, Chichester

    Google Scholar 

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2002) Norma Oficial Mexicana NOM-021-SEMARNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis/Mexican Official Norm NOM-021-SEMARNAT-2000 establishing the specifications of fertility, salinity and soil classification, survey, sampling and analysis. Published on December 31 2002 in The Official Gazette of the Federation. Mexico

  • Sizirici B, Tansel B (2010) Projection of landfill stabilization period by time series analysis of leachate quality and transformation trends of VOC’s. Waste Manage 30:82–91

    Article  Google Scholar 

  • Valdez-Carrillo M (2010) Impacto de los residuos provenientes de un tiradero a cielo abierto sobre la calidad del agua subterránea/The impact of wastes from an open dump on groundwater’s quality. Dissertation, Autonomous University of Baja California, UABC

  • Van Breukelen BM, Griffioen J (2004) Biogeochemical processes at the fringe of a landfill leachate pollution plume: plume for dissolved organic carbon, Fe(II), Mn(II), NH4 and CH4 oxidation. J Contam Hydrol 73(1–4):181–205. doi:10.1016/j.jconhyd.2004.01.001

    Article  Google Scholar 

  • Van De Kamp PC (1973) Holocene continental sedimentation in the Salton Basin, California: a reconnaissance. Geol Soc Am Bull 84:827–848

    Article  Google Scholar 

  • Zuhairi Wan WY (2003) Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environ Geol 45:236–242. doi:10.1007/s00254-003-0871-5

    Article  Google Scholar 

  • Zume JT, Tarhule A, Christenson S (2006) Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma. Ground Water Monit Remediat 26(2):62–6919

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Alonso Reyes-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Puentes, F.J., Pérez-Flores, M.A., Reyes-López, J.A. et al. Geochemical modeling and low-frequency geoelectrical methods to evaluate the impact of an open dump in arid and deltaic environments. Environ Earth Sci 75, 1062 (2016). https://doi.org/10.1007/s12665-016-5860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5860-6

Keywords

Navigation