Comparison Between Single and Two-Stage Anaerobic Digestion of Vegetable Waste: Kinetics of Methanogenesis and Carbon Flow

  • Dinh Pham VanEmail author
  • Fujiwara Takeshi
  • Giang Hoang Minh
  • Song Toan Pham Phu
Original Research


This study aims to compare the performance and kinetics between the single-stage anaerobic digestion (SAD) and the two-stage anaerobic digestion (TAD) of vegetable waste (VW). The SAD was performed using continuously stirred tank reactors. Meanwhile, the TAD experiment was set up using a combined system involving a continuously stirred tank for hydrolysis/acidogenesis and an upflow reactor for methanogenesis. The hydrolytic reactor operated as a batch process with a retention time (RT) of 9 days, while the methane reactor was a continuous process operation with RT of 20 days. Both TAD and SAD were controlled at a temperature of 36 °C. The SAD experiments lasted for 143 days, and were characterised by the kinetic rate constant k = 0.02 day−1 which was much lower than that for the TAD (k = 0.66 − 2.16 day−1). The SAD seemed to be inhibited by high concentration of free ammonia and low inoculum to substrate ratio; herein, only 17.8–22.3% of the initial carbon could be converted into biogas (equivalent to 91–110 Nml/g-VSadded) with low methane content (44.1–48.7%). Meanwhile, TAD converted 41.67% initial carbon to biogas (equivalent to 299.0–374.6 Nml/g-VSadded) with high methane content (71.68–81.0%). Moreover, methanogenesis in the TAD was highly stable which enabled the digestion process to return to normal state within a few days, even though the concentrations of the influent increased to double (6.5–24.5 g-COD/l). As per these results, the TAD was much more stable, faster, and stronger than the SAD.

Graphic Abstract


Anaerobic digestion Single-stage digestion Two-stage digestion Vegetable waste 



The authors would like to thank the Okayama University (Japan) and National University of Civil Engineering (vietnam) for their financial support.


  1. 1.
    Ji, C., Kong, C.-X., Mei, Z.-L., Li, J.: A review of the anaerobic digestion of fruit and vegetable waste. Appl. Biochem. Biotechnol. 183(3), 906–922 (2017). CrossRefGoogle Scholar
  2. 2.
    Lin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K., Chen, L., Gan, H.: Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 23(8), 1403–1408 (2011). CrossRefGoogle Scholar
  3. 3.
    Plazzotta, S., Manzocco, L., Nicoli, M.C.: Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 63, 51–59 (2017). CrossRefGoogle Scholar
  4. 4.
    Chernicharo de Lemos, C.A.: Anaerobic reactors, vol. 4. Biological Wastewater Treatment Series. IWA Publishing, London (2007)Google Scholar
  5. 5.
    Van, D.P., Fujiwara, T., Tho, B.L., Toan, P.P.S., Minh, G.H.: A review of anaerobic digestion systems for biodegradable waste: configurations, operating parameters, and current trends. Environ. Eng. Res. (2019). CrossRefGoogle Scholar
  6. 6.
    Aslanzadeh, S., Rajendran, K., Taherzadeh, M.J.: A comparative study between single-and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time. Int. Biodeterior. Biodegrad. 95, 181–188 (2014). CrossRefGoogle Scholar
  7. 7.
    Ramos-Suárez, J., Arroyo, N.C., González-Fernández, C.: The role of anaerobic digestion in algal biorefineries: clean energy production, organic waste treatment, and nutrient loop closure. In: Singh, B., Kuldeep, B., Faizal, B. (eds.) Algae and Environmental Sustainability, pp. 53–76. Springer, India (2015)CrossRefGoogle Scholar
  8. 8.
    Mao, C., Feng, Y., Wang, X., Ren, G.: Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 45, 540–555 (2015). CrossRefGoogle Scholar
  9. 9.
    Trzcinski, A.P., David, C.S.: Microbial biomethane from solid wastes: principles and biotechnogical processes. In: Harzevili, F.D., Serge, H. (eds.) Microbial Fuels. pp. 77–151. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  10. 10.
    Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J.P., Delgenes, J.P.: Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Manag. (Oxford) 34(5), 875–885 (2014).CrossRefGoogle Scholar
  11. 11.
    Xiao, B., Qin, Y., Wu, J., Chen, H., Yu, P., Liu, J., Li, Y.-Y.: Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: performance, energy balance and reaction process. Energy Convers. Manag. 156, 215–223 (2018). CrossRefGoogle Scholar
  12. 12.
    Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., Oberti, R., Adani, F.: Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environ. Sci. Technol. 46(15), 8502–8510 (2012). CrossRefGoogle Scholar
  13. 13.
    Begum, S., Anupoju, G.R., Sridhar, S., Bhargava, S.K., Jegatheesan, V., Eshtiaghi, N.: Evaluation of single and two stage anaerobic digestion of landfill leachate: effect of pH and initial organic loading rate on volatile fatty acid (VFA) and biogas production. Bioresour. Technol. 251, 364–373 (2018). CrossRefGoogle Scholar
  14. 14.
    APHA: Standard Methods for the Examination of Water and Wastewater. In. USA: Washington, D.C, (2012)Google Scholar
  15. 15.
    Dinh, P.V., Hoang, M.G., Pham Phu, S.T., Fujiwara, T.: Kinetics of carbon dioxide, methane and hydrolysis in co-digestion of food and vegetable wastes. Glob. J. Environ. Sci. Manag. 4(4), 401–412 (2018a). CrossRefGoogle Scholar
  16. 16.
    Dinh, P.V., Hoang, M.G., Pham Phu, S.T., Fujiwara, T.: A new kinetic model for biogas production from co-digestion by batch mode. Glob. J. Environ. Sci. Manag. 4(3), 251–262 (2018b). CrossRefGoogle Scholar
  17. 17.
    Basu, D., Asolekar, S.R.: Evaluation of substrate removal kinetics for UASB reactors treating chlorinated ethanes. Environ. Sci. Pollut. Res. 19(6), 2419–2427 (2012). CrossRefGoogle Scholar
  18. 18.
    Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., Li, X.: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresour. Technol. 144, 80–85 (2013). CrossRefGoogle Scholar
  19. 19.
    Dinh, P.V., Fujiwara, T., Phu, S.T.P., Hoang, M.G.: Kinetic of biogas production in co-digestion of vegetable waste, horse dung, and sludge by batch reactors. In: IOP Conference Series: Earth and Environmental Science, vol. 1, p. 012041. IOP Publishing, Bristol (2018)Google Scholar
  20. 20.
    Gallert, C., Winter, J.: Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol. 48(3), 405–410 (1997). CrossRefGoogle Scholar
  21. 21.
    Braun, R., Huber, P., Meyrath, J.: Ammonia toxicity in liquid piggery manure digestion. Biotechnol. Lett. 3(4), 159–164 (1981). CrossRefGoogle Scholar
  22. 22.
    Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., Mansour, A.A.: Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Manag. (Oxford) 32(12), 2258–2265 (2012). CrossRefGoogle Scholar
  23. 23.
    Parawira, W., Murto, M., Zvauya, R., Mattiasson, B.: Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew. Energy 29(11), 1811–1823 (2004). CrossRefGoogle Scholar
  24. 24.
    Chen, S., Zhang, J., Wang, X.: Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag. Res. 33(11), 1033–1040 (2015). CrossRefGoogle Scholar
  25. 25.
    Nielfa, A., Cano, R., Vinot, M., Fernández, E., Fdz-Polanco, M.: Anaerobic digestion modeling of the main components of organic fraction of municipal solid waste. Process Saf. Environ. Prot. 94, 180–187 (2015). CrossRefGoogle Scholar
  26. 26.
    Ravi, P.P., Lindner, J., Oechsner, H., Lemmer, A.: Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste. Bioresour. Technol. 247, 96–102 (2018). CrossRefGoogle Scholar
  27. 27.
    Wu, Y., Wang, C., Liu, X., Ma, H., Wu, J., Zuo, J., Wang, K.: A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresour. Technol. 211, 16–23 (2016). CrossRefGoogle Scholar
  28. 28.
    Raynal, J., Delgenes, J., Moletta, R.: Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresour. Technol. 65(1–2), 97–103 (1998). CrossRefGoogle Scholar
  29. 29.
    Möller, K., Müller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12(3), 242–257 (2012). CrossRefGoogle Scholar
  30. 30.
    Romli, M., Greenfield, P., Lee, P.: Effect of recycle on a two-phase high-rate anaerobic wastewater treatment system. Water Res. 28(2), 475–482 (1994). CrossRefGoogle Scholar
  31. 31.
    Diamantis, V., Aivasidis, A.: Kinetic analysis and simulation of UASB anaerobic treatment of a synthetic fruit wastewater. Glob. NEST J. 12(2), 175–180 (2010). CrossRefGoogle Scholar
  32. 32.
    Math-Alvarez, J., Viturtia, A.M., Llabres-Luengo, P., Cecchi, F.: Kinetic and performance study of a batch two-phase anaerobic digestion of fruit and vegetable wastes. Biomass Bioenergy 5(6), 481–488 (1993). CrossRefGoogle Scholar
  33. 33.
    Gerardi, M.H.: The Microbiology of Anaerobic Digesters. Wiley-Interscience, New Jersey, USA (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Environmental Technology and ManagementNational University of Civil EngineeringHa NoiVietnam
  2. 2.Department of Environmental Science, Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
  3. 3.The University of Danang - University of Technology and EducationDanang CityVietnam

Personalised recommendations