Skip to main content

Advertisement

Log in

Biohydrogen Production From Beverage Wastewater Using Selectively Enriched Mixed Culture

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In order to select the efficient hydrogen-producers for beverage wastewater (BW), initially sucrose was chosen as a sole carbon source to enrich efficient hydrogen-producers from two different compost seeds. The enriched mixed culture (EMC) obtained from the compost of food waste (C1) provided a hydrogen yield (HY) and hydrogen production rate (HPR) of 3.76 mol/mol sucrose and 1.15 L/L-d, respectively. The EMC (C1) was further used for optimization of pH, temperature and substrate concentration from BW and showed the optimal conditions of pH 5.5, temperature 37 °C and a substrate concentration of 20 g/L, respectively. Under these conditions, the optimal HPR and HY were observed as 2.16 L/L-d and 1.30 mol/mol hexoseutilized. Ratkowsky kinetic model analysis provided the optimal temperature value of 38.5 °C. While, Monod model was used to predict the substrate concentration effects and it showed the Rm and Ks values as 3.57 L/L-d and 8.29 g/L, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BW:

Beverage wastewater (BW)

COD:

Chemical oxygen demand

CHP:

Cumulative hydrogen production

DF:

Dark fermentation

EMC:

Enriched mixed culture

HY:

Hydrogen yield

HPR:

Hydrogen production rate

SMP:

Soluble metabolic products

References

  1. Budiman, P.M., Wu, T.Y.: Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Convers. Manag. 165, 509–527 (2018)

    Article  Google Scholar 

  2. Demirbas, A.: Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33, 1–18 (2007)

    Article  Google Scholar 

  3. Lin, C.Y., Lay, C.H., Sen, B., Chu, C.Y., Kumar, G., Chen, C.C., Chang, J.S.: Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrog. Energy. 37, 15632–15642 (2012)

    Article  Google Scholar 

  4. Kumar, G., Lin, C.Y.: Bioconversion of de-oiled Jatropha Waste (DJW) to hydrogen and methane gas by anaerobic fermentation: Influence of substrate concentration, temperature and pH. Int. J. Hydrog. Energy. 38, 63–72 (2013)

    Article  Google Scholar 

  5. Lorencini, P., Siqueira, M.R., Maniglia, B.C., Tapia, D.R., Maintinguer, S.I., Reginatto, V.: Biohydrogen production from liquid and solid fractions of sugarcane bagasse after optimized pretreatment with hydrochloric acid. Waste Biomass. Valoriz. 7, 1017–1029 (2016)

    Article  Google Scholar 

  6. Argun, H., Dao, S.: Hydrogen gas production from waste peach pulp by natural microflora. Waste. Biomass. Valoriz. https://doi.org/10.1007/s12649-017-9990-1 (2017)

    Article  Google Scholar 

  7. Sekoai, P.T., Ayeni, A.O., Daramola, M.O.: Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass. Valoriz. https://doi.org/10.1007/s12649-017-0136-2 (2017)

    Article  Google Scholar 

  8. Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I.: Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrog. Energy. 27, 1339–1347 (2002)

    Article  Google Scholar 

  9. Valdez-Vazquez, I., Poggi-Varaldo, H.M.: Hydrogen production by fermentative consortia. Renew. Sustain. Energy. Rev. 13, 1000–1013 (2009)

    Article  Google Scholar 

  10. Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: A review. Int. J. Hydrog. Energy. 34, 799–811 (2009)

    Article  Google Scholar 

  11. Fan, Y., Li, C., Lay, J.J., Hou, H., Zhang, G.: Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour. Technol. 91, 189–193 (2004)

    Article  Google Scholar 

  12. Ren, N.Q., Xu, J.F., Gao, L.F., Xin, L., Qiu, J., Su, D.X.: Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int. J. Hydrog. Energy. 35, 2742–2746 (2010)

    Article  Google Scholar 

  13. Ueno, Y., Otsuka, S., Morimoto, M.: Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng. 82, 194–197 (1996)

    Article  Google Scholar 

  14. Mäkinen, A.E., Nissilä, M.E., Puhakka, J.A.: Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int. J. Hydrog. Energy. 37, 12234–12240 (2012)

    Article  Google Scholar 

  15. Sivagurunathan, P., Lin, C.Y.: Enhanced biohydrogen production from beverage wastewater: process performance during various hydraulic retention times and their microbial insights. RSC Adv. 6, 4160–4169 (2016)

    Article  Google Scholar 

  16. Sivagurunathan, P., Sen, B., Lin, C.Y.: Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition. J. Biosci. Bioeng. 117, 222–228 (2014)

    Article  Google Scholar 

  17. Endo, G., Noike, T., Matsumoto, T.: Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc.Civ. Eng. 325, 61–68 (1982)

    Article  Google Scholar 

  18. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)

    Article  Google Scholar 

  19. Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N., Chandler, R.E.: Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154, 1222–1226 (1983)

    Article  Google Scholar 

  20. Kumar, G., Lay, C.H., Chu, C.Y., Wu, J.H., Lee, S.C., Lin, C.Y.: Seed inocula for biohydrogen production from biodiesel solid residues. Int. J. Hydrog. Energy. 37, 15489–15495 (2012)

    Article  Google Scholar 

  21. Akutsu, Y., Lee, D.Y., Li, Y.Y., Noike, T.: Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrog. Energy. 34, 5365–5372 (2009)

    Article  Google Scholar 

  22. Tang, G.-L., Huang, J., Sun, Z.-J., Tang, Q.Q., Yan, C.H., Liu, G.Q.: Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J. Biosci. Bioeng. 106, 80–87 (2008)

    Article  Google Scholar 

  23. Stavropoulos, K.P., Kopsahelis, A., Zafiri, C., Kornaros, M.: Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valoriz. 7, 753–764 (2016)

    Article  Google Scholar 

  24. Sen, B., Suttar, R.R.: Mesophilic fermentative hydrogen production from sago starch-processing wastewater using enriched mixed cultures. Int. J. Hydrog. Energy. 37, 15588–15597 (2012)

    Article  Google Scholar 

  25. Mu, Y., Zheng, X.J., Yu, H.Q., Zhu, R.F.: Biological hydrogen production by anaerobic sludge at various temperatures. Int. J. Hydrog. Energy. 31, 780–785 (2006)

    Article  Google Scholar 

  26. Argun, H., Dao, S.: Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition. Int. J. Hydrog. Energy. 42, 2569–2574 (2017)

    Article  Google Scholar 

  27. Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N., Esposito, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 144, 73–95 (2015)

    Article  Google Scholar 

  28. Shi, X.Y., Jin, D.W., Sun, Q.Y., Li, W.W.: Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach. Renew. Energy. 35, 1493–1498 (2010)

    Article  Google Scholar 

  29. Wu, J.H., Lin, C.Y.: Biohydrogen production by mesophilic fermentation of food wastewater. Wat. Sci. Technol. 49, 223–228 (2004)

    Article  Google Scholar 

  30. Hay, J.X.W., Wu, T.Y., Juan, J.C., Jahim, J.M.: Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling. Environ. Sci. Pollut. Res. 24(11), 10354–10363 (2017)

    Article  Google Scholar 

  31. Amorim, N.C.S., Amorim, E.L.C., Kato, M.T., Florencio, L., Gavazza, S.: The effect of methanogenesis inhibition, inoculum and substrate concentration on hydrogen and carboxylic acids production from cassava wastewater. Biodegradation 29, 41–58 (2018)

    Article  Google Scholar 

  32. Islam, M.S., Guo, C., Liu, C.Z.: Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int. J. Hydrog. Energy. 43, 659–666 (2018)

    Article  Google Scholar 

  33. Sivagurunathan, P., Kumar, G., Lin, C.Y.: Hydrogen and ethanol fermentation of various carbon sources by immobilized Escherichia coli (XL1-Blue). Int. J. Hydrog. Energy. 39, 6881–6888 (2014)

    Article  Google Scholar 

  34. Lee, H.S., Salerno, M.B., Rittmann, B.E.: Thermodynamic evaluation on H2 production in glucose fermentation. Environ. Sci. Technol. 42, 2401–2407 (2008)

    Article  Google Scholar 

  35. Chu, C.Y., Tung, L., Lin, C.Y.: Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. Int. J. Hydrog. Energy. 38, 15849–15855 (2013)

    Article  Google Scholar 

  36. Chen, W.H., Chen, S.Y., Kumar Khanal, S., Sung, S.: Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrog. Energy 31, 2170–2178 (2006)

    Article  Google Scholar 

  37. Hsiao, C.L., Chang, J.J., Wu, J.H., Chin, W.C., Wen, F.S., Huang, C.C., Chen, C.C., Lin, C.Y.: Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. Int. J. Hydrog. Energy. 34, 7173–7181 (2009)

    Article  Google Scholar 

  38. Cappelletti, B.M., Reginatto, V., Amante, E.R., Antônio, R.V.: Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew. Energy 36, 3367–3372 (2011)

    Article  Google Scholar 

  39. Khamtiba, S., Plangklanga, P., Reungsang, A.: Optimization of fermentative hydrogen production from hydrolysate of microwave assisted sulfuric acid pretreated oil palm trunk by hot spring enriched culture. Int. J. Hydrog. Energy. 36, 14204–14216 (2011)

    Article  Google Scholar 

  40. Wicher, E., Seifert, K., Zagrodnik, R., Pietrzyk, B., Laniecki, M.: Hydrogen gas production from distillery wastewater by dark fermentation. Int. J. Hydrog. Energy 38(1), 7767–7773 (2013)

    Article  Google Scholar 

  41. Sivagurunathan, P., Kumar, G., Lin, C.Y.: Enhancement of fermentative hydrogen production from beverage wastewater via bioaugmentation and statistical optimization. Curr. Biochem. Eng. 1, 92–98 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periyasamy Sivagurunathan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivagurunathan, P., Lin, CY. Biohydrogen Production From Beverage Wastewater Using Selectively Enriched Mixed Culture. Waste Biomass Valor 11, 1049–1058 (2020). https://doi.org/10.1007/s12649-019-00606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00606-z

Keywords

Navigation