Advertisement

Journal of Parasitic Diseases

, Volume 42, Issue 2, pp 162–170 | Cite as

Using proteomics as a powerful tool to develop a vaccine against Mediterranean visceral leishmaniasis

  • Sajad Rashidi
  • Kurosh Kalantar
  • Gholamreza HatamEmail author
Review Article
  • 77 Downloads

Abstract

Visceral leishmaniasis (VL) is a tropical infectious disease, which is called Mediterranean visceral leishmaniasis (MVL) in the Mediterranean area. In spite of many attempts, no effective commercial vaccine exists for MVL. To find new targets for developing antileishmanial vaccines, knowing parasite antigens that provoke the immune system are on demand. Nowadays, proteomics methods are defined as approaches for analysis of protein profiling of different cells. Within this framework, detection of new antigens is becoming more facilitated. In this review, we aimed to introduce possible targets using proteomics so; they could be used as candidates for developing vaccines against MVL. It can shed new light in the near future on the development of promising vaccines for MVL.

Keywords

Mediterranean visceral leishmaniasis Proteomics Vaccine target 

Notes

Acknowledgements

This article was supported by Shiraz University of Medical Sciences under the Grant Number 94-7597.

Author contributions

Sajad Rashidi: Data collection and manuscript writing; Kurosh kalantar: Project development, manuscript editing, and data analysis; Hatam Gholamreza: Project development, manuscript editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. Acestor N, Masina S, Ives A, Walker J, Saravia NG, Fasel N (2006) Resistance to oxidative stress is associated with metastasis in mucocutaneous leishmaniasis. J Infect Dis 194:1160–1167CrossRefPubMedGoogle Scholar
  2. Agallou M, Athanasiou E, Samiotaki M, Panayotou G, Karagouni E (2016) Identification of immunoreactive Leishmania infantum protein antigens to asymptomatic dog sera through combined immunoproteomics and bioinformatics analysis. PLoS ONE 11:e0149894CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alcolea PJ, Alonso A, Larraga V (2009) Genome-wide analysis reveals increased levels of transcripts related with infectivity in peanut lectin non-agglutinated promastigotes of Leishmania infantum. Genomics 93:551–564CrossRefPubMedGoogle Scholar
  4. Alcolea PJ, Alonso A, Gómez MJ, Moreno I, Domínguez M, Parro V et al (2010) Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage. Int J Parasitol 40:1497–1516CrossRefPubMedGoogle Scholar
  5. Alcolea PJ, Alonso A, Larraga V (2011) Proteome profiling of Leishmania infantum promastigotes. J Eukaryot Microbiol 58:352–358CrossRefPubMedGoogle Scholar
  6. Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, Dedet JP et al (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aravind L, Iyer LM, Anantharaman V (2003) The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 4:R64CrossRefPubMedPubMedCentralGoogle Scholar
  8. Azizi K, Rassi Y, Javadian E, Motazedian M, Rafizadeh S, Yaghoobi Ershadi M et al (2006) Phlebotomus (Paraphlebotomus) alexandri: a probable vector of Leishmania infantum in Iran. Ann Trop Med Parasitol 100:63–68CrossRefPubMedGoogle Scholar
  9. Barati M, Mohebali M, Alimohammadian MH, Khamesipour A, Akhoundi B, Zarei Z (2015) Canine visceral leishmaniasis: seroprevalence survey of asymptomatic dogs in an endemic area of northwestern Iran. J Parasit Dis 39:221–224CrossRefPubMedGoogle Scholar
  10. Barhoumi M, Tanner N, Banroques J, Linder P, Guizani I (2006) Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast. FEBS J 273:5086–5100CrossRefPubMedGoogle Scholar
  11. Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause E et al (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3:1811–1829CrossRefPubMedGoogle Scholar
  12. Bhattacharya P, Dey R, Dagur PK, Kruhlak M, Ismail N, Debrabant A et al (2015) Genetically modified live attenuated Leishmania donovani parasites induce innate immunity through classical activation of macrophages that direct the Th1 response in mice. Infect Immun 83:3800–3815CrossRefPubMedPubMedCentralGoogle Scholar
  13. Braga MS, Neves LX, Campos JM, Roatt BM, de Oliveira Aguiar Soares RD et al (2014) Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Mol Biochem Parasitol 195:43–53CrossRefPubMedGoogle Scholar
  14. Brobey RK, Soong L (2007) Establishing a liquid-phase IEF in combination with 2-DE for the analysis of Leishmania proteins. Proteomics 7:116–120CrossRefPubMedGoogle Scholar
  15. Brotherton M-C, Racine G, Ouameur AA, Leprohon P, Papadopoulou B, Ouellette M (2012) Analysis of membrane-enriched and high molecular weight proteins in Leishmania infantum promastigotes and axenic amastigotes. J Proteome Res 11:3974–3985CrossRefPubMedGoogle Scholar
  16. Brotherton M-C, Bourassa S, Légaré D, Poirier GG, Droit A, Ouellette M (2014) Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist 4:126–132CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D (2015) The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol 31:100–108CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carrilloa E, Crusat M, Nietoa J, Chicharroa C, Martinezc E, Valladares B et al (2008) Immunogenicity of HSP-70, KMP-11 and PFR-2 leishmanial antigens in the experimental model of canine visceral leishmaniasis. Vaccine 26:1902–1911CrossRefGoogle Scholar
  19. Coelho VT, Oliveira JS, Valadares DG, Chávez-Fumagalli MA, Duarte MC, Lage PS et al (2012) Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Negl Trop Dis 6:e1430CrossRefPubMedPubMedCentralGoogle Scholar
  20. Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG (2007) Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4 + T cells. Infect Immun 75:4648–4654CrossRefPubMedPubMedCentralGoogle Scholar
  21. da Fonseca Pires S, Fialho LC Jr, Silva SO, Melo MN, de Souza CC, Tafuri WL et al (2014) Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res 13:1860–1872CrossRefGoogle Scholar
  22. Daneshvar H, Wyllie S, Phillips S, Hagan P, Burchmore R (2012) Comparative proteomics profiling of a gentamicin-attenuated Leishmania infantum cell line identifies key changes in parasite thiol-redox metabolism. J Proteom 75:1463–1471CrossRefGoogle Scholar
  23. Dea-Ayuela MA, Rama-Iñiguez S, Bolás-Fernández F (2006) Proteomic analysis of antigens from Leishmania infantum promastigotes. Proteomics 6:4187–4194CrossRefPubMedGoogle Scholar
  24. Dias DS, Ribeiro PAF, Martins VT, Lage DP, Ramos FF, Dias ALT et al (2017) Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cell Immunol.  https://doi.org/10.1016/j.cellimm.2017.11.001 PubMedCrossRefGoogle Scholar
  25. El Fakhry Y, Ouellette M, Papadopoulou B (2002) A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics 2:1007–1017CrossRefPubMedGoogle Scholar
  26. Fakhar M, Asgari Q, Motazedian M, Mohebali M, Hatam G, Alborzi A (2006) First report of Kala-azar from Qeshm Island in Persian Gulf. Iran J Parasitol 1:53–56Google Scholar
  27. Foroughi-Parvar F, Hatam G (2014) Vaccines for canine leishmaniasis advances in preventive medicine. Adv Prev Med.  https://doi.org/10.1155/2014/569193 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Foroughi-Parvar F, Hatam G-R, Sarkari B, Kamali-Sarvestani E (2015) Leishmania infantum FML pulsed-dendritic cells induce a protective immune response in murine visceral leishmaniasis. Immunotherapy 7(1):3–12.  https://doi.org/10.2217/imt.14.102 CrossRefPubMedGoogle Scholar
  29. Gannavaram S, Dey R, Avishek K, Selvapandiyan A, Salotra P, Nakhasi HL (2014) Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis–discovery and implications. Front Immunol 5:241CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gharekhani J, Heidari H, Hajian-Bidar H, Abbasi-Doulatshahi E, Edalati-Shokat H (2016) Prevalence of anti-Leishmania infantum antibodies in dogs from West of Iran. J Parasit Dis 40:964–967CrossRefPubMedGoogle Scholar
  31. Ghatee MA, Sharifi I, Haghdoost AA, Kanannejad Z, Taabody Z, Hatam G et al (2013) Spatial correlations of population and ecological factors with distribution of visceral leishmaniasis cases in southwestern Iran. J Vector Borne Dis 50:179PubMedGoogle Scholar
  32. Gómez-Arreaza A, Acosta H, Barros-Álvarez X, Concepción JL, Albericio F, Avilan L (2011) Leishmania mexicana: LACK (Leishmania homolog of receptors for activated C-kinase) is a plasminogen binding protein. Exp Parasitol 127:752–761CrossRefPubMedGoogle Scholar
  33. Gupta G, Oghumu S, Satoskar AR (2013) Mechanisms of immune evasion in leishmaniasis. Adv Appl Microbiol 82:155–184.  https://doi.org/10.1016/B978-0-12-407679-2.00005-3 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gupta R, Kumar V, Kushawaha PK, Tripathi ChP, Joshi S, Sahasrabuddhe AA et al (2014) Characterization of glycolytic enzymes-rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. PLoS ONE 9(1):e86073.  https://doi.org/10.1371/journal.pone.0086073 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hatam GR, Adnani SJ, Asgari Q, Fallah E, Motazedian MH, Sadjjadi SM et al (2010) First report of natural infection in cats with Leishmania infantum in Iran. Vector Borne Zoonotic Dis 10:313–316CrossRefPubMedGoogle Scholar
  36. Herosimczyk A, Dejeans N, Sayd T, Ozgo M, Skrzypczak W, Mazur A (2006) Plasma proteome analysis: 2D geld and chips. J Physiol Pharmacol 57:81PubMedGoogle Scholar
  37. Hide M, Ritleng A-S, Brizard J-P, Monte-Allegre A, Sereno D (2008) Leishmania infantum: tuning digitonin fractionation for comparative proteomic of the mitochondrial protein content. Parasitol Res 103:989–992CrossRefPubMedGoogle Scholar
  38. Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC et al (2017) Gene expression in Leishmania is regulated predominantly by gene dosage. MBio.  https://doi.org/10.1128/mbio.01393-17 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ismail N, Kaul A, Bhattacharya P, Gannavaram S, Nakhasi HL (2017) Immunization with live attenuated Leishmania donovani Centrin−/− parasites is efficacious in asymptomatic infection. Front Immunol 8:1788CrossRefPubMedPubMedCentralGoogle Scholar
  40. Isnard A, Shio MT, Olivier M (2012) Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol 2:72CrossRefPubMedPubMedCentralGoogle Scholar
  41. Iyer JP, Kaprakkaden A, Choudhary ML, Shaha C (2008) Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence. Mol Microbiol 68:372–391CrossRefPubMedGoogle Scholar
  42. Jaiswal A, Khare P, Joshi S, Kushawaha P, Sundar S (2014) Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis. PLoS ONE 9(9):e108556.  https://doi.org/10.1371/journal.pone.0108556 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Joshi S, Rawat K, Yadav NK, Kumar V, Siddiqi MI, Dube A (2014) Visceral leishmaniasis: advancements in vaccine development via classical and molecular approaches. Front Immunol 5:380CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kamoun-Essghaier S, Guizani I, Strub JM, Van Dorsselaer A, Mabrouk K, Ouelhazi L et al (2005) Proteomic approach for characterization of immunodominant membrane-associated 30-to 36-kilodalton fraction antigens of Leishmania infantum promastigotes, reacting with sera from mediterranean visceral leishmaniasis patients. Clin Diagn Lab Immunol 12(2):310–320.  https://doi.org/10.1128/cdli.12.2.310-320.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kedzierski L (2010) Leishmaniasis vaccine: where are we today? J Glob Infect Dis 2:177CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kumar A, Samant M, Misra P, Khare P, Sundar S, Garg R et al (2015) Immunostimulatory potential and proteome profiling of Leishmania donovani soluble exogenous antigens. Parasite Immunol 37:368–375CrossRefPubMedGoogle Scholar
  47. Kushawaha PK, Gupta R, Sundar S, Sahasrabuddhe AA, Dube A (2011) Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-γ and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. J Immunol 187:6417–6427CrossRefPubMedGoogle Scholar
  48. Kushawaha PK, Gupta R, Tripathi CDP, Khare P, Jaiswal AK, Sundar S et al (2012) Leishmania donovani triose phosphate isomerase: a potential vaccine target against visceral leishmaniasis. PLoS ONE 7(9):e45766.  https://doi.org/10.1371/journal.pone.0045766 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR (2007) Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol 152:35–46CrossRefPubMedGoogle Scholar
  50. Lemesre J-L, Holzmuller P, Cavaleyra M, Gonçalves RB, Hottin G, Papierok G (2005) Protection against experimental visceral leishmaniasis infection in dogs immunized with purified excreted secreted antigens of Leishmania infantum promastigotes. Vaccine 23:2825–2840CrossRefPubMedGoogle Scholar
  51. Lewandowicz A, Bakun M, Imiela J, Dadlez M, Specjalistyczny MS, Mas ŚLS (2009) Proteomics in uronephrology new perspectives of noninvasive diagnostics? Nefrol Dial Pol 13:15–21Google Scholar
  52. Lieke T, Nylén S, Eidsmo L, McMaster WR, Mohammadi AM, Khamesipour A et al (2008) Leishmania surface protein gp63 binds directly to human natural killer cells and inhibits proliferation. Clin Exp Immunol 153:221–230CrossRefPubMedPubMedCentralGoogle Scholar
  53. Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, Lleonart R (2015) The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep 5:8550.  https://doi.org/10.1038/srep08550 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lynn MA, Marr AK, McMaster WR (2013) Differential quantitative proteomic profiling of Leishmania infantum and Leishmania mexicana density gradient separated membranous fractions. J Proteom 82:179–192CrossRefGoogle Scholar
  55. Mansueto P, Vitale G, Di Lorenzo G, Rini G, Mansueto S, Cillari E (2007) Immunopathology of leishmaniasis: an update. Int J Immunopathol Pharmacol 20:435–445CrossRefPubMedGoogle Scholar
  56. McNicoll F, Drummelsmith J, Müller M, Madore É, Boilard N, Ouellette M et al (2006) A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 6:3567–3581CrossRefPubMedGoogle Scholar
  57. Mohammadi-Ghalehbin B, Hatam GR, Sarkari B, Mohebali M, Zarei Z, Jaberipour M et al (2011) A Leishmania infantum FML-ELISA for the detection of symptomatic and asymptomatic canine visceral leishmaniasis in an endemic area of Iran. Iran J Immunol 8:244PubMedGoogle Scholar
  58. Moreira DS, Murta SM (2016) Involvement of nucleoside diphosphate kinase b and elongation factor 2 in Leishmania braziliensis antimony resistance phenotype. Parasit Vectors 9:641CrossRefPubMedPubMedCentralGoogle Scholar
  59. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. The Lancet 366:1561–1577CrossRefGoogle Scholar
  60. Nasereddin A, Schweynoch C, Schonian G, Jaffe CL (2010) Characterization of Leishmania (Leishmania) tropica axenic amastigotes. Acta Trop 113:72–79CrossRefPubMedGoogle Scholar
  61. Nieto A, Domínguez-Bernal G, Orden JA, De La Fuente R, Madrid-Elena N, Carrión J (2011) Mechanisms of resistance and susceptibility to experimental visceral leishmaniosis: BALB/c mouse versus syrian hamster model. Vet Res 42:39CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nissum M, Foucher AL (2008) Analysis of human plasma proteins: a focus on sample collection and separation using free-flow electrophoresis. Expert Rev Proteomics 5:571–587CrossRefPubMedGoogle Scholar
  63. Nylen S, Gautam S (2010) Immunological perspectives of leishmaniasis. J Glob Infect Dis 2:135CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nylén S, Gautam S (2010) Immunological perspectives of leishmaniasis. J Glob Infect Dis 2:135CrossRefPubMedPubMedCentralGoogle Scholar
  65. Oryan A, Shirian S, Tabandeh MR, Hatam GR, Kalantari M, Daneshbod Y (2013) Molecular, cytological, and immunocytochemical study and kDNA sequencing of laryngeal Leishmania infantum infection. Parasitol Res 112:1799–1804CrossRefPubMedGoogle Scholar
  66. Petitdidier E, Pagniez J, Papierok G, Vincendeau P, Lemesre J-L, Bras-Gonçalves R (2016) Recombinant forms of Leishmania amazonensis excreted/secreted promastigote surface antigen (PSA) induce protective immune responses in dogs. PLoS Negl Trop Dis 10(5):e0004614.  https://doi.org/10.1371/journal.pntd.0004614 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Portman N, Gull K (2010) The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 40:135–148CrossRefPubMedPubMedCentralGoogle Scholar
  68. Postigo JAR (2010) Leishmaniasis in the world health organization eastern mediterranean region. Int J Antimicrob Agents 36:S62–S65CrossRefPubMedGoogle Scholar
  69. Ramírez CA, Requena JM, Puerta CJ (2013) Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression. BMC Genom 14:454CrossRefGoogle Scholar
  70. Rassi Y, Azizi K, Motazedian M, Javadian E, Rafizadeh S, Fakhar M et al (2007) The seminested PCR based detection of Leishmania infantum infection in asymptomatic dogs in a new endemic focus of visceral leishmaniasis in Iran. J Arthropod Borne Dis 1:38–42Google Scholar
  71. Reithinger R, Dujardin J-C, Louzir H, Pirmez C, Alexander B, Brooker S (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7:581–596CrossRefPubMedGoogle Scholar
  72. Roberts M (2005) Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br Med Bull 75:115–130PubMedCrossRefGoogle Scholar
  73. Sabzevari S, Razmi GR, Naghibi A, Khoshnegah J (2013) A serological study of Leishmania infantum in dogs of Khorasan Razavi province, Iran. J Parasit Dis 37:189–191CrossRefPubMedGoogle Scholar
  74. Singh OP, Stober CB, Singh AK, Blackwell JM, Sundar S (2012) Cytokine responses to novel antigens in an Indian population living in an area endemic for visceral leishmaniasis. PLoS Negl Trop Dis 6(10):e1874.  https://doi.org/10.1371/journal.pntd.0001874 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 95:45–52CrossRefPubMedGoogle Scholar
  76. Smita K, Qadar Pasha MA, Jain SK (2015) High altitude illness and adaptation: hints from proteomics. J Proteomics Bioinform S3:004.  https://doi.org/10.4172/jpb.S3-004 CrossRefGoogle Scholar
  77. Srivastava S, Shankar P, Mishra J, Singh S (2016) Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasit Vectors 9:277CrossRefPubMedPubMedCentralGoogle Scholar
  78. Thongboonkerd V (2004) Proteomics in nephrology: current status and future directions. Am J Nephrol 24:360–378CrossRefPubMedGoogle Scholar
  79. Tripathi P, Singh V, Naik S (2007) Immune response to Leishmania: paradox rather than paradigm. FEMS Microbiol Rev 51:229–242Google Scholar
  80. Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910CrossRefPubMedGoogle Scholar
  81. Vincent IM, Racine G, Légaré D, Ouellette M (2015) Mitochondrial proteomics of antimony and miltefosine resistant Leishmania infantum. Proteomes 3:328–346CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhang X, Fang A, Riley CP, Wang M, Regnier FE, Buck C (2010) Multi-dimensional liquid chromatography in proteomics—a review. Anal Chim Acta 664(2):101–113.  https://doi.org/10.1016/j.aca.2010.02.001 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Society for Parasitology 2018

Authors and Affiliations

  • Sajad Rashidi
    • 1
  • Kurosh Kalantar
    • 2
  • Gholamreza Hatam
    • 3
    Email author
  1. 1.Department of Parasitology and MycologyShiraz University of Medical SciencesShirazIran
  2. 2.Department of ImmunologyShiraz University of Medical SciencesShirazIran
  3. 3.Basic Sciences in Infectious Diseases Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations