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Abstract Visceral leishmaniasis (VL) is a tropical infec-

tious disease, which is called Mediterranean visceral

leishmaniasis (MVL) in the Mediterranean area. In spite of

many attempts, no effective commercial vaccine exists for

MVL. To find new targets for developing antileishmanial

vaccines, knowing parasite antigens that provoke the

immune system are on demand. Nowadays, proteomics

methods are defined as approaches for analysis of protein

profiling of different cells. Within this framework, detec-

tion of new antigens is becoming more facilitated. In this

review, we aimed to introduce possible targets using pro-

teomics so; they could be used as candidates for developing

vaccines against MVL. It can shed new light in the near

future on the development of promising vaccines for MVL.
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Introduction

Visceral leishmaniasis (VL) is caused by Leishmania

donovani and L. infantum in the old world, while it is due

to L. chagasi in the new world. In Mediterranean regions,

L. infantum is the main cause of Mediterranean visceral

leishmaniasis (MVL) (Azizi et al. 2006; Barati et al. 2015;

Fakhar et al. 2006; Gharekhani et al. 2016; Ghatee et al.

2013; Hatam et al. 2010). Approximately every year

500,000 new cases of VL occur in the world (Barati et al.

2015; Ghatee et al. 2013). In the zoonotic pattern, reser-

voirs are dogs and rodents (Postigo 2010; Reithinger et al.

2007; Sabzevari et al. 2013). Evidence has shown that dogs

can act as a natural host for MVL, and human is its acci-

dental host (Fig. 1). In VL, parasites tend to infect mac-

rophages throughout the viscera. Manifestations of VL in

human are different and vary and sometimes it could

appear in a life-threatening progressive visceral form of the

disease. For instance, the confection of HIV with VL is a

serious problem for health care conditions (Alvar et al.

2008).

With respect to the diagnostic of VL, the methods are

different. They include parasitology, biochemical, sero-

logical and molecular approaches (Mohammadi-Ghalehbin

et al. 2011; Oryan et al. 2013; Rassi et al. 2007). Che-

motherapy is the first choice for VL treatment but unfor-

tunately, using the available drugs is accompanied by the

side effects (Murray et al. 2005). Side effects and resis-

tance to available drugs prompt the investigators to invent

new drugs. Doubtless, an effective vaccine would be an

appropriate treatment.

Nowadays, new techniques such as proteomics give us a

promising approach for discovering new targets to develop

a protective vaccine for infectious diseases like leishma-

niasis. The aim of this review was to provide a view about

those markers characterized by proteomics technique in

previous articles.
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Vaccines for leishmaniasis

Th1 is responsible for the immunity against the Leishma-

nia. This subset of T- cells by producing of IFN-c can

activate the macrophages to kill the parasite (Mansueto

et al. 2007; Nylén and Gautam 2010). In the treated

patients, it has been shown that recovery and resistance to

reinfection are related to the development of antigen-

specific Th1 cell responses (Nylen and Gautam 2010;

Roberts 2005; Tripathi et al. 2007). Taken together, a good

strategy for developing a vaccine against leishmaniasis,

such as MVL, should focus on eliciting the Th1 cells

against the Leishmania parasites.

Some research groups characterized a number of Leish-

mania proteins which produced variable protection against

Leishmania in animal models (Coler et al. 2007; Foroughi-

Parvar et al. 2015; Foroughi-Parvar and Hatam 2014;

Kushawaha et al. 2011; Singh et al. 2012). Also, using killed

Leishmania vaccine has shown different results in different

studies (Kedzierski 2010; Srivastava et al. 2016). On the

other hand, live attenuated ones have shown an effective

protection in some studies (Bhattacharya et al. 2015; Gan-

navaram et al. 2014; Ismail et al. 2017). The use of

attenuated Leishmania parasites as a vaccine is very inter-

esting because they are somehow mimicking the natural

infection. In addition, it leads to similar immune responses.

Bymeans of molecular techniques, the recombinant proteins

are becoming another new approach for vaccines develop-

ment (Coler et al. 2007; Dias et al. 2017). In contrast to the

substantial effort to develop a vaccine, there is no approved

vaccine against human leishmaniasis, while there are

approved vaccines for dogs (Reithinger et al. 2007).

Nowadays, by completion of genome sequencing of

Leishmania, it seems that invention of a vaccine is

becoming an easier task than before (Cantacessi et al.

2015; Llanes et al. 2015). Recently, researchers have

attempted to use proteomics techniques for introducing

immunodominant antigens in Leishmania parasites for

designing new effective vaccines.

Proteomics

Proteome refers to the set of proteins encoded by the

genome and defined as an analysis of proteins in order to

determine their unique identity, quantity, function, and

Fig. 1 Life-cycle of L. infantum: Leishmania has a digenetic life-

cycle consisting of an extracellular flagellated stage (promastigote) in

the sandfly vectors, and an aflagellated intracellular stage (amastigote)

in the animal reservoirs and human. Reproduced with permission

from Nieto et al. (2011)
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interaction (Herosimczyk et al. 2006). Evidence has been

shown that this method also practically suitable for analysis

of the proteome of Leishmania genus (Murray et al. 2005;

Reithinger et al. 2007). As most of the genes are conserved

among the Leishmania species, there is a poor correlation

between the transcripts and the proteins expressed by the

Leishmania parasite (Iantorno et al. 2017) in Leishmania

spp. Functional genomic analysis of mRNA also does not

show the whole pattern of protein expression. A wide-

spread technique, like western blotting, just looks at the

change in one protein, but if we intend to check the

changes in a large number of proteins in various biological

materials and microorganism at the same time, proteomics

facilitates this task (Lewandowicz et al. 2009) and helps us

to discover biomarkers which can be applied to drug,

vaccine, and diagnostic targets (Thongboonkerd 2004).

Methods and steps involved in proteomics analysis

Combination of proteomics, bioinformatics and mass

spectrometry (MS) could give us a good quality of pro-

teome maps. 2-dimensional gel electrophoresis (2DE) is a

method which can separate the proteins mixtures based on

the net charge by isoelectric focusing (IEF) (1 dimension)

and based on to the molecular weight by sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (2

dimensions). After staining the gels, protein spots were

digested by trypsin; then we extracted peptides sequence

using tandem mass spectrometry (MS/MS) (Fig. 2) which

is linked to a genome sequence database.

For reducing the complexity of proteins, fractionation

by ammonium sulfate and digitonin prefractionation apply

for detecting the markers with low molecular mass

(McNicoll et al. 2006). For enhancing the visualization of

targets with low molecular masson the gels, liquid phase

IEF should be combined with 2DE (Brobey and Soong

2007).

Recently, proteomics methods have been improved by

using multi-dimensional liquid chromatography (LC) and

applied for proteomics of pathogenic organisms (Zhang

et al. 2010).

Proposed targets for MVL vaccines using
proteomics in promastigotes and amastigotes

To find new targets for developing anti-leishmanial vac-

cines, knowing the biology of the parasite and exact

mechanism of host-parasite interactions are two important

issues that are worth noticing. Within this framework,

different studies have found out proteins which are

involved in parasite’s vitality, infectivity, and invasiveness

(da Fonseca et al. 2014; Dea-Ayuela et al. 2006). Expres-

sed proteins responsible for survival and infectivity are not

directly related to the vaccine potential targets except the

proteins which are immunodominant that can be applied

for a vaccine against MVL in future. Recognition of

immunodominant proteins by immunoproteomics method

seems to be on demand for designing a practical vaccine in

MVL.

The results of a study indicated that the immunodomi-

nant proteins in L. infantum promastigote membranes were

located in molecular weight of 30–36 kDa range (Kamoun-

Essghaier et al. 2005). The spots sequences showed LACK

(Leishmania homolog of receptors for activated C-kinase)

and a possible member of the aldehyde reductase family

provokes humoral immunity in MVL (Gómez-Arreaza

et al. 2011). These proteins belong to the conserved pro-

teins which are permanently expressed in the eukaryotic

cells.

Another study, using multiplex 2D on attenuated L.

infantum promastigotes (Aravind et al. 2003), showed

observable changes in the thiol-redox control system and

made it less virulent (Daneshvar et al. 2012). This meta-

bolic system is vital and protects the Leishmania against

the oxidative burst of macrophages (Acestor et al. 2006).

Also, the metabolism of hydrogen peroxide and trypan-

othione reductase activity in the attenuated type was

Fig. 2 Overview of steps involved in proteomics analysis: whole cell

lysate or a special cell fraction can be analyzed by 2DE and mass

spectrometry. Reproduced with permission from Smita et al. (2015)
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declined in comparison to the wild-type. Consequently,

using immunodominant targets of attenuated promastigotes

forms is probably helpful in improving vaccines.

A recent study on L. infantum promastigote in loga-

rithmic phase introduced some immunodominant proteins

such as ATPase beta subunit (chaperone function); propi-

onyl carboxylase (in fatty acid metabolism); transketolase

(in carbohydrate metabolism); succinyl-diaminopimelate

desuccinylase (in amino acid metabolism and synthesis);

proteasome subunit (in protein synthesis and catabolism);

full size heat shock protein 70 (in stress response/chaper-

one) and adrenodoxin reductase, a non-antigenic protein

which is related to the ergosterol biosynthesis pathway

(Dea-Ayuela et al. 2006). Most of these proteins are

immunodominant and have been proved associated with

crucial physiological and virulence functions of Leishma-

nia parasite. Thus, these results help us to identify new

targets for developing vaccines for VL.

The result of a 2D immunoblotting study on the late-

logarithmic phase of L. infantum promastigotes (Agallou

et al. 2016) identified immunodominant proteins mostly

include in stress responses and metabolic systems. These

data also showed that eukaryotic initiation factor 4a (elF-

4a) and LACK are known for their immunostimulatory

potential and provoke antigen-presenting cells to produce

IL-12 and TNFa.
Also, in this study, an in silico investigation proposed

that the chaperonin HSP60, enolase, cyclophilin 2, dihy-

drolipoamide dehydrogenase, and cyclophilin 40 are

restricted to MHC-I and/or MHC-II. The identification of

proteins which are restricted to MHC-I and MHC-II is very

crucial to have a long-lasting response of CD8? and

CD4? respectively against the parasites. Based on the

finding of this study, apparently, the combination of

bioinformatics and immunoproteomics will probably guide

us to predict vaccine targets.

The results of an immunoproteomics study on L.

infantum promastigote stage (Coelho et al. 2012) show that

the phosphoglycan beta-1, 3-galactosyltransferase, and

flagellum transition zone component, which is linked to

LPG synthesis, are more highly expressed. In addition,

elongation factors, heat shock proteins such as HSP70,

HSP83 and other chaperones, as well as tubulin and other

housekeeping proteins, were observed. It seems that HSPs

have important roles in immunity. Also, there are targets

for the responses of the immunity system to a wide dif-

ference of pathogens including fungi, bacteria, helminths,

and protozoa (Tsan and Gao 2009). These data are

important for designing vaccines and biology of L.

infantum.

In Leishmania parasites, over-expression of some genes

is directly or indirectly related to the infectivity (Alcolea

et al. 2009, 2010). In 2011 (Alcolea et al. 2011), an

investigation by 2DE and MS processed the proteins of L.

infantum promastigote in early logarithmic to stationary

phase in the replicate axenic cultures. The observation

indicated that the level of protein and mRNA in eukaryotic

elongation factor 1a (eEF1a) subunit and the electron

transfer flavoprotein (ETF), had the equal expression level

and in the stationary phase it was decreased. In pro-

mastigotes in dividing logarithmic stage, a 51 kDa subunit

of replication factor A showed an up-regulation. All of the

proteins ascribed here display the same differential regu-

lation values with the identical mRNA levels. Therefore,

during the life cycle of L. infantum, the 40S ribosomal

protein S12, the eEF1a subunit, the ETF, a-tubulin and the

T-complex protein 1 subunit c are regulated in different

patterns both in proteome and transcriptome. It seems that

they get close to the target for a vaccine for each stage.

A recent study on L. infantum promastigote in loga-

rithmic phase (Dea-Ayuela et al. 2006) introduced some

structural immunodominant targets, such as paraflagellar

rod protein 3 (PAR3), which can be effective for vaccine

targets in MVL. It has been demonstrated that some

structural proteins in Leishmania are functional and several

of them are crucial for developmental stages and parasite

life cycle. Thus, these results support us to identify new

targets for developing vaccines.

The results of a study (Kamoun-Essghaier et al. 2005)

illustrated that elongation factor 1a is a mitochondrial

protein which could stimulate the antibody in visceral

leishmaniasis. Also, elongation factor 2 and elongation

factor 1a are able to induce cellular immunity in leishma-

niasis patients (Jaiswal et al. 2014; Kushawaha et al. 2011).

All the mentioned proteins in the current investigation

belong to the conserved proteins which permanently

expressed in eukaryotic cells and could be a possible target

for diagnosis and vaccine against MVL.

The results of another study by free flow electrophoresis

(FFE) and IEF separation technique (Brotherton et al.

2012; Nissum and Foucher 2008) showed that glycolytic

enzymes and flagella proteins upregulated in the L. infan-

tum promastigotes. In amastigote, enzymes included in

fatty acid b oxidation and gluconeogenesis was overex-

posed. In accordance with this data, post-translational

modification occurs in each stage. Consequently, these

observations could open a new horizon for developing a

new vaccine.

In another research by labeling the cysteine-reactive

light and heavy ICAT (Isotope Coded Affinity Tag)

reagents on L. infantum,(Leifso et al. 2007), the authors

displayed the paraflagellar rod proteins (PFR) (Portman

and Gull 2010) and cell surface protease leishmanolysin

(GP63) (Isnard et al. 2012; Lieke et al. 2008). The PFR is a

multifunctional complex of the cytoskeleton structure and

the motility of Leishmania parasite is dependent on it
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(Carrilloa et al. 2008). GP63, which is a surface protease in

Leishmania, is very important in the virulence and infec-

tivity. Organisms that express gp63 can utilize the opsonic

effects of complement while avoiding its lytic effects

(Gupta et al. 2013). Thus, we can use these specific pro-

teins to design effective vaccines in future.

The membranous proteins are crucial in the regulatory

pathways of Leishmania parasites and host–pathogen

interactions. A quantitative mass spectrometry study (Lynn

et al. 2013) identified that approximately 20–40% of pro-

teins in the amastigote and promastigote of L. infantum

were different in expression. Drawing a map for proteins

such as leishmanolysin (GP63), eEF-1a and amastin based

on their functions in the metabolism, infectivity, and vir-

ulence could help us to detect proteins which can poten-

tially be candid for inventing the MVL vaccines.

The analysis of proteins in developmental stages of L.

infantum showed that 6.1% of proteins were related to the

promastigote, and 12.4% belonged to the amastigotes

(McNicoll et al. 2006). The correlation between amastigote

specific protein isoforms and its mRNA was almost 53%,

while in respect to the promastigote specific spots, no

correlation was observed. A lot of proteins were indicated

in multiple spots; consequently, that post-translational

modification is too much in this parasite. In some cases,

different isoforms seem to be proprietary to different life

stages. These data proposed that post-transcriptional con-

trols at translational and post-translational levels could

perform remark function in the differentiation of Leish-

mania. Consequently, this data indicates the necessity of

attention to post-translational modification of protein for

development of a vaccine for leishmaniasis.

In a proteomics study (Leifso et al. 2007), histone gly-

colytic proteins and enzyme enolase (Gupta et al. 2014)

were introduced in protein profiling of L. infantum. In

addition to apoptosis roles, glycolytic proteins are essential

for transcriptional control of histone gene expression

(Sirover 2005). Based on the essential role of these pro-

teins, they can be probable targets in VL vaccines in future.

In a proteomics study, the authors checked the virulence

factors in the amastigote forms extracted from the macro-

phages (in vitro) and hamster (in vitro) tissues (da Fonseca

et al. 2014). The results illustrated that over-expression of

KMP-11, phosphomannomutase, metallopeptidase, EF-2,

Rieske iron–sulfur protein precursor, and S-adenosylho-

mocysteine is associated to the virulence and degradation

of host cell protective proteins. Also, tryparedoxin perox-

idase and peroxiredoxin keep the L. infantum safe against

the stress conditions (Iyer et al. 2008). On the other hand,

EF-1 a inhibits the activation of macrophage and chaper-

ones, and endoribonuclease L-PSP has a role in the pro-

longation of host cell lifetime and parasite survival. In

conclusion, these proteins are indispensable for the parasite

survival and pathogenesis; thus, targeting of these signifi-

cant proteins should be considered for focusing on MVL

vaccines.

In an immunoproteomics study on antigenic extracts of

L. infantum axenic amastigotes (Coelho et al. 2012), ATP-

dependent RNA helicase (Barhoumi et al. 2006) and

amastin (Nasereddin et al. 2010) were presented. These

proteins are comparable to the tissue amastigotes. In

addition, elongation factors, heat shock proteins such as

HSP70, HSP83, and other chaperones, as well as tubulin

and other housekeeping proteins, have been observed.

These data are in the same line with those of other studies

(Moreira and Murta 2016; Ramı́rez et al. 2013). In addi-

tion, to use these markers in the improvement of vaccines

for MVL, by focusing on these proteins, we can reach more

information about the biology of L. infantum. Thus, further

studies are recommended to be done in this regard.

An investigation in Canada (El Fakhry et al. 2002) used

comparative 2DE and MS to introduce proteins that are

differentially presented in the amastigote of L. infantum.

They identified two proteins, which belong to the isocitrate

dehydrogenase, energetic metabolism pathways, and the

glycolytic enzyme triosephosphate isomerase. Isocitrate

dehydrogenase exists in the tricarboxylic acid cycle, a

metabolic pathway in which acetate is oxidized to produce

ATP. Triosephosphate isomerase is the other protein indi-

cating a high presentation in amastigotes, which is a high

current enzyme that roles as an essential duty in glycolysis

(Kushawaha et al. 2012). The kinetic analysis illustrates

that their activity and amount are more in amastigote in

comparison to promastigote. For instance, Triosephosphate

isomerase (TIM) activity in L. infantum amastigotes was

twofold higher in comparison to L. infantum promastigotes,

probably due to amastigotes need to high levels of TIM

activity to make ATP via glycolysis within host cells

(Bente et al. 2003). Generally, these enzymes have a cru-

cial role in metabolism, survival, and pathogenicity of the

amastigote in L. infantum so can be effective in designing

vaccines for MVL.

Proposed targets for MVL vaccines using
proteomics in the excretory-secretory antigens
(ES) of L. infantum promastigotes

Nowadays, scientists believe that excretory-secretory

antigens (ES) are appropriate sources for immune system

stimulating and vaccines in MVL (Joshi et al. 2014;

Lemesre et al. 2005; Petitdidier et al. 2016). Shotgun

proteomics approaches revealed that the proteins in secre-

tions of L. infantum promastigote are associated with the

nucleotide metabolism, carbohydrate metabolism, antioxi-

dant activity, protein degradation, heat-shock response, and
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other processes. In this survey, the ES immunodominant

proteins were checked with the sera of animals with clin-

ical manifestation for canine visceral leishmaniasis (CVL).

In addition to the new research avenues in MVL probable

vaccines (Braga et al. 2014), these isolated proteins are

important to check the immune responses and the pathol-

ogy of L. infantum.

The results of another immunoproteomics study on

soluble exogenous antigens (SEAgs) of L. donovani (Ku-

mar et al. 2015) indicated that enolase, carboxypeptidase

and activated protein kinase C receptor homolog deviate

the immune responses to the Th1 cells; consequently, they

are suitable targets for vaccine development. Also, heat-

shock 70-related protein1, glucose-regulated protein 78 and

heat-shock 70-kDa proteins have been introduced as the

inducer of Th1 immune responses. The finding of these

new targets may be our dream in case of VL vaccines

comes true. Since the L. donovani and L. infantum are two

agents of VL in different areas, we are convinced to focus

on the results of this research to propose these targets as a

vaccine for MVL in the future.

Proteomics and drug resistance and the targets
that can be proposed for MVL vaccine

In a study, the mitochondrion of L. infantum was exposed

to Antimony (SbIII) and Miltefosine (MIL) (Vincent et al.

2015). Although these drugs induce the cell death through

the changes on the Leishmania mitochondrion, the parasite

can be adapted and withstand these drugs by changes in the

proteins’ pattern. Generally, mitochondrial DNA adapts the

parasite to the different nutritional condition and also helps

the parasite to grow in different hosts. That is why; the

results of these studies can guide us to target the special

proteins in the mitochondrion. Thus, by evaluation of their

immunogenicity, we can reach a new source of antigens for

designing a vaccine against Leishmania spp. Also, Hide

et al. (2008) studied the mitochondrial protein content of L.

infantum, using proteomics. They present mitochondrial

fraction with lowest levels of cytosolic contamination by

performing fractionation with the focus and enrichment of

mitochondrial proteins.

A comparative proteomics study on resistance and sen-

sitive strains of L. infantum to the Amphotericin B (AmB)

(Brotherton et al. 2014) showed that in the resistance

mutant strain, up-regulation was seen in the proteins which

belonged to the glycolysis and tricarboxylic acid cycle.

Interestingly, up-regulation was observed in reactive oxy-

gen species (ROS) scavenging and heat shock proteins in

the resistant mutant. Knowing the protein profiles of sen-

sitive and resistant strains of L. infantum can improve our

information about the selection of appropriate targets for

MVL vaccines.

Conclusion

As reviewed above, proteomics technique gives us a

facility for identification of protein profiling of Leishmania

parasites. After identification of protein targets, we should

identify immunodominant proteins which provoke the

immune responses against L. infantum. These introduced

targets can be evaluated in Elisa, western blotting and

in vivo to prove their immunostimulatory property for

designing a vaccine.

It seems that most of the proteins that reviewed the

candidates for VL vaccines are located in the metabolism

pathway of Leishmania parasites. Additionally, some of

these proteins are located in the other part of the parasite

such as flagella. It proposes that for obtaining more

appropriate and effective vaccine targets, 2DE and mass

spectrometry should be performed on the special fraction

of the parasite, not on the whole parasite lysate.
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Alcolea PJ, Alonso A, Gómez MJ, Moreno I, Domı́nguez M, Parro V

et al (2010) Transcriptomics throughout the life cycle of

Leishmania infantum: high down-regulation rate in the amastig-

ote stage. Int J Parasitol 40:1497–1516

Alcolea PJ, Alonso A, Larraga V (2011) Proteome profiling of

Leishmania infantum promastigotes. J Eukaryot Microbiol

58:352–358

J Parasit Dis (Apr-June 2018) 42(2):162–170 167

123



Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, Dedet JP

et al (2008) The relationship between leishmaniasis and AIDS:

the second 10 years. Clin Microbiol Rev 21:334–359

Aravind L, Iyer LM, Anantharaman V (2003) The two faces of Alba:

the evolutionary connection between proteins participating in

chromatin structure and RNA metabolism. Genome Biol 4:R64

Azizi K, Rassi Y, Javadian E, Motazedian M, Rafizadeh S, Yaghoobi

Ershadi M et al (2006) Phlebotomus (Paraphlebotomus) alexan-

dri: a probable vector of Leishmania infantum in Iran. Ann Trop

Med Parasitol 100:63–68

Barati M, Mohebali M, Alimohammadian MH, Khamesipour A,

Akhoundi B, Zarei Z (2015) Canine visceral leishmaniasis:

seroprevalence survey of asymptomatic dogs in an endemic area

of northwestern Iran. J Parasit Dis 39:221–224

Barhoumi M, Tanner N, Banroques J, Linder P, Guizani I (2006)

Leishmania infantum LeIF protein is an ATP-dependent RNA

helicase and an eIF4A-like factor that inhibits translation in

yeast. FEBS J 273:5086–5100

Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause

E et al (2003) Developmentally induced changes of the proteome

in the protozoan parasite Leishmania donovani. Proteomics

3:1811–1829

Bhattacharya P, Dey R, Dagur PK, Kruhlak M, Ismail N, Debrabant A

et al (2015) Genetically modified live attenuated Leishmania

donovani parasites induce innate immunity through classical

activation of macrophages that direct the Th1 response in mice.

Infect Immun 83:3800–3815

Braga MS, Neves LX, Campos JM, Roatt BM, de Oliveira Aguiar

Soares RD et al (2014) Shotgun proteomics to unravel the

complexity of the Leishmania infantum exoproteome and the

relative abundance of its constituents. Mol Biochem Parasitol

195:43–53

Brobey RK, Soong L (2007) Establishing a liquid-phase IEF in

combination with 2-DE for the analysis of Leishmania proteins.

Proteomics 7:116–120

Brotherton M-C, Racine G, Ouameur AA, Leprohon P, Papadopoulou

B, Ouellette M (2012) Analysis of membrane-enriched and high

molecular weight proteins in Leishmania infantum promastigotes

and axenic amastigotes. J Proteome Res 11:3974–3985

Brotherton M-C, Bourassa S, Légaré D, Poirier GG, Droit A,
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