Skip to main content
Log in

Elaboration, Stability and Enzymatic Degradation of Hydroxypropylcellulose/Polysiloxane Biocomposite Membranes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Biopolymers are promising alternatives to synthetic macromolecules for the design of composite materials complying with Green Chemistry principles. In this context, the conditions to associate hydroxypropyl-cellulose and polymethylhydrosiloxane within homogeneous membranes were studied. The stability of these membranes in water and in the presence of a cellulase enzyme were investigated by Thermogravimetric Analysis, Scanning Electron Microscopy and Fourier-Transform Infra-Red Spectroscopy. These investigations reveal that the biopolymer is still accessible to a solubilisation/degradation process without inducing the breaking down of the composite materials, opening the route to the design of novel membranes for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 1–2:19–26

    Article  Google Scholar 

  2. Slater S, Glassner D, Vink E, Gerngross T (2003) In: Steinbüchel A (ed) Biopolymers, vol 10. Weinheim, Wiley-VCH

    Google Scholar 

  3. Anastas P, Warner J (1990) Green chemistry: Theory and practice. Oxford University Press, New York, NY

    Google Scholar 

  4. Gross RA, Kalra B (2002) Science 297:803–807

    Article  CAS  Google Scholar 

  5. Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Biodegradable polymers: Past, present and future. ASAE Paper N°03-0007. ASAE, St Joseph

    Google Scholar 

  6. Van de Velde K, Kiekens P (2002) Polym Test 21:433–442

    Article  Google Scholar 

  7. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  8. Mayes EL, Vollrath F, Mann S (1998) Adv Mater 10:801–805

    Article  CAS  Google Scholar 

  9. Ruiz-Hitzky E, Darder M, Aranda P (2005) J Mater Chem 15:3650–3662

    Article  CAS  Google Scholar 

  10. El Kadib A, Molvinger K, Guimon C, Quignard F, Brunel D (2008) Chem Mater 20:2198–2204

    Article  Google Scholar 

  11. Marelli B, Ghezzi CE, Barralet JE, Boccaccini AR, Nazhat SN (2010) Biomacromolecules 11:1470–1479

    Article  CAS  Google Scholar 

  12. Nassif N, Gobeaux F, Seto J, Belamie E, Davidson P, Panine P, Mosser G, Fratzl P, Giraud-Guille MM (2010) Chem Mater 22:3307–3309

    Article  CAS  Google Scholar 

  13. Fuentes S, Retuert PJ, Ubilla A, Fernandez J, Gonzalez G (2000) Biomacromolecules 1:239–243

    Article  CAS  Google Scholar 

  14. Shchipunov YA, Karpenko TY (2004) Langmuir 20:3882–3887

    Article  CAS  Google Scholar 

  15. Ramachandran S, Coradin T, Jain PK, Verma SK (2009) Silicon 1:215–223

    Article  CAS  Google Scholar 

  16. Lligadas G, Ronda JC, Galià M, Càdiz V (2006) Biomacromolecules 7:3521–3526

    Article  CAS  Google Scholar 

  17. Coradin T, Allouche J, Boissière M, Livage J (2006) Curr Nanosci 2:219–230

    CAS  Google Scholar 

  18. Desimone MF, Hélary C, Rietveld IB, Bataille I, Mosser G, Giraud-Guille MM, Livage J, Coradin T (2010) Acta Biomater 6:3998–4004

    Article  CAS  Google Scholar 

  19. Boileau S, Boury B, Ganachaud, F (eds) (2008) Silicon based polymers: Advanced in synthesis and supramolecular organization. Springer-VCH

  20. Coffey DG, Bell DA, Henderson A (2006) In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. CRC, Boca Raton, FL

    Google Scholar 

  21. Benmouhoub N, Simmonet N, Agoudjil N, Coradin T (2008) Green Chem 10:957–964

    Article  CAS  Google Scholar 

  22. Yano S (1994) Polymer 35:5565–5570

    Article  CAS  Google Scholar 

  23. Thomas A, Antonietti M (2003) Adv Funct Mater 13:763–766

    Article  CAS  Google Scholar 

  24. Ferjani E, Mejdoub M, Roudesli MS, Chehimi MM, Picard D, Delamar M (2000) J Membrane Sci 165:125–133

    Article  CAS  Google Scholar 

  25. Chen Y, Ding D, Mao Z, He Y, Hu Y, Wu W, Jiang X (2008) Biomacromolecules 9:2609–2614

    Article  CAS  Google Scholar 

  26. Zollfrank C, Kladny R, Sieber H, Greil P (2004) J Eur Ceram Soc 24:479–487

    Article  CAS  Google Scholar 

  27. Androit M et al (2007) In: De Jaeger R, Gleria M (eds) Inorganic polymers. Nova Science, New York, NY

    Google Scholar 

  28. Visvanathan C, Ben Aim R, Parameshwaran K (2000) Crit Rev Environ Sci Technol 30:1–48

    Article  CAS  Google Scholar 

  29. Wagner PA, Little BJ, Hart KR, Ray RI (1996) Int Biodeter Biodegrad 34:125–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Coradin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etteyeb, N., Jaouen, V., Steunou, N. et al. Elaboration, Stability and Enzymatic Degradation of Hydroxypropylcellulose/Polysiloxane Biocomposite Membranes. Silicon 4, 79–84 (2012). https://doi.org/10.1007/s12633-011-9082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-011-9082-y

Keywords

Navigation