Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles

  • Peng-peng Bai
  • Jie Zhou
  • Bing-wei Luo
  • Shu-qi ZhengEmail author
  • Peng-yan Wang
  • Yu TianEmail author


This study investigated the susceptibility of X80 pipeline steel to hydrogen embrittlement given different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles in H2S environment. The fracture strain of the steel samples decreased with increasing hydrogen pre-charging time; this steel degradation could almost be recovered after diffusible hydrogen was removed when the hydrogen pre-charging time was <8 d. However, unrecoverable degeneration occurred when the hydrogen pre-charging time extended to 16–30 d. Moreover, nanovoid formation meant that the hydrogen damage to the steel under intermittent hydrogen pre-charging–releasing–recharging conditions was more serious than that under continuous hydrogen pre-charging conditions. This study illustrated that the mechanical degradation of steel is inevitable in an H2S environment even if diffusible hydrogen is removed or visible hydrogen-induced cracking is neglected. Furthermore, the steel samples showed premature fractures and exhibited a hydrogen fatigue effect because the repeated entry and release of diffusible hydrogen promoted the formation of vacancies that aggregated into nanovoids. Our results provide valuable information on the mechanical degradation of steel in an H2S environment, regarding the change rules of steel mechanical properties under different hydrogen pre-charging times and hydrogen charging–releasing–recharging cycles.


high-strength steel hydrogen embrittlement corrosion hydrogen diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51805292, 51671215, and 51425502) and the National Postdoctoral Program for Innovative Talents of China (No. BX201700132).


  1. [1]
    M.R. Louthan Jr, G.R. Caskey Jr, J.A. Donovan, and D.E. Rawl Jr, Hydrogen embrittlement of metals, Mater. Sci. Eng., 10(1972). p. 357.CrossRefGoogle Scholar
  2. [2]
    P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, and C.F. Chen, Roles of carbon dioxide and steam on the hydrogen embrittlement of 3Cr tube steel in synthetic natural gas environment, Corros. Eng Sci. Technol, 53(2018). No. 1 p. 1.CrossRefGoogle Scholar
  3. [3]
    M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, and K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels, Int. J. Hydrogen Energy, 42(2017). No. 17 p. 12706.CrossRefGoogle Scholar
  4. [4]
    A. Kawashima, K. Hashimoto, and S. Shimodaira, Hydrogen electrode reaction and hydrogen embrittlement of mild steel in hydrogen sulfide solutions, Corrosion, 32(1976). No. 8 p. 321.CrossRefGoogle Scholar
  5. [5]
    B.J. Berkowitz and H.H. Horowitz, The role of H2S in the corrosion and hydrogen embrittlement of steel, J. Electrochem. Soc, 129(1982). No. 3 p. 468.CrossRefGoogle Scholar
  6. [6]
    J. Woodtli and R. Kieselbach, Damage due to hydrogen embrittlement and stress corrosion cracking, Eng Fail.Anal, 7(2000). No. 6 p. 427.CrossRefGoogle Scholar
  7. [7]
    F.D. de Moraes, F.L. Bastian, and J.A. Ponciano, Influence of dynamic straining on hydrogen embrittlement of UNS-G41300 and UNS-S31803 steels in a low H2S concentration environment, Corros. Sci., 47(2005). No. 6 p. 1325.CrossRefGoogle Scholar
  8. [8]
    M. Monnot, R.P. Nogueira, V. Roche, G. Berthomé, E. Chauveau, R. Estevez, and M. Mantel, Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement, Appl. Surf. Sci., 394(2017). p. 132.CrossRefGoogle Scholar
  9. [9]
    S.H. Li, C.F. Chen, Y.N. Liu, H.B. Yu, and X.L. Wang, Influence of surface martensite layer on hydrogen embrittlement of Fe-Mn-C-Mo steels in wet H2S environment, Int. J. Hydrogen Energy, 43(2018). No. 34 p. 16728.CrossRefGoogle Scholar
  10. [10]
    W.Y. Chu, L.J. Qiao, Q.Z. Chen, and K.W. Gao, Fracture and Environment Induced Cracking, Sciences Express, Beijing, 2000, p. 106.Google Scholar
  11. [11]
    J.P. Hirth, Effects of hydrogen on the properties of iron and steel, Metall. Trans. A, 11(1980). No. 6 p. 861.CrossRefGoogle Scholar
  12. [12]
    K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Lattice defects dominating hydrogen-related failure of metals, Acta Mater, 56(2008). No. 18 p. 5158.CrossRefGoogle Scholar
  13. [13]
    T. Neeraj, R. Srinivasan, and J. Li, Hydrogen embrittlement of ferritic steels: observations on deformation micro-structure, nanoscale dimples and failure by nanovoiding, Acta Mater., 60(2012), No. 13–14, p. 5160.CrossRefGoogle Scholar
  14. [14]
    D.G. Xie, S.Z. Li, M. Li, Z.J. Wang, P. Gumbsch, J. Sun, E. Ma, and Z. Shan, Hydrogenated vacancies lock dislocations in aluminium, Nat. Commun., 7(2016), art. No. 13341.Google Scholar
  15. [15]
    M. Hattori, H. Suzuki, Y. Seko, and K. Takai, The role of hydrogen-enhanced strain-induced lattice defects on hydrogen embrittlement susceptibility of X80 pipeline steel, JOM, 69(2017). No. 8 p. 1375.CrossRefGoogle Scholar
  16. [16]
    L. Wan, W.T. Geng, A. Ishii, J.P. Du, Q.S. Mei, N. Ishikawa, H. Kimizuka, and S. Ogata, Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron, Int. J. Plast, 112(2019). p. 206.CrossRefGoogle Scholar
  17. [17]
    Y. Momotani, A. Shibata, D. Terada, and N. Tsuji, Effect of strain rate on hydrogen embrittlement in low-carbon martensitic steel, Int. J. Hydrogen Energy, 42(2017). No. 5 p. 3371.CrossRefGoogle Scholar
  18. [18]
    D. Pérez Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, and K. Verbeken, Thermal desorption spectroscopy study of the interaction between hydrogen and different microstructural constituents in lab cast Fe-C alloys, Corros. Sci, 65(2012). p. 199.CrossRefGoogle Scholar
  19. [19]
    H.S. Noh, J.H. Kang, K.M. Kim, and S.J. Kim, The effect of carbon on hydrogen embrittlement in stable Cr-Ni-Mn-N austenitic stainless steels, Corros. Sci, 124(2017). p. 63.CrossRefGoogle Scholar
  20. [20]
    R.A. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metall, 18(1970). No. 1 p. 147.CrossRefGoogle Scholar
  21. [21]
    M.Q. Wang, E. Akiyama, and K. Tsuzaki, Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test, Corros. Sci, 49(2007). No. 11 p. 4081.CrossRefGoogle Scholar
  22. [22]
    W.K. Kim, S.U. Koh, B.Y. Yang, and K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corros. Sci, 50(2008). No. 12 p. 3336.CrossRefGoogle Scholar
  23. [23]
    K. Takai and R. Watanuki, Hydrogen in trapping states innocuous to environmental degradation of high-strength steels, ISIJ Int, 43(2003). No. 4 p. 520.CrossRefGoogle Scholar
  24. [24]
    M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater, 70(2014). p. 174.CrossRefGoogle Scholar
  25. [25]
    T. Doshida and K. Takai, Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content, Acta Mater, 79(2014). p. 93.CrossRefGoogle Scholar
  26. [26]
    I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, Hydrogen embrittlement susceptibility of a high strength steel X80, Mater. Sci Eng. A, 527(2010), No. 27–28, p. 7252.CrossRefGoogle Scholar
  27. [27]
    X. Zhu, W. Li, H.S. Zhao, L. Wang, and X.J. Jin, Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel, Int. J. Hydrogen Energy, 39(2014). No. 24 p. 13031.CrossRefGoogle Scholar
  28. [28]
    S.J. Kim, D.W. Yun, H.G. Jung, and K.Y. Kim, Determination of hydrogen diffusion parameters of ferritic steel from electrochemical permeation measurement under tensile loads, J. Electrochem. Soc, 161(2014), No. 12, p. E173.CrossRefGoogle Scholar
  29. [29]
    F. Huang, X.G. Li, J. Liu, Y.M. Qu, J. Jia, and C.W. Du, Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel, J. Mater. Sci, 46(2011). No. 3 p. 715.CrossRefGoogle Scholar
  30. [30]
    M. Koyama, E. Akiyama, and K. Tsuzaki, Effect of hydrogen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel, Corros. Sci, 59(2012). p. 277.CrossRefGoogle Scholar
  31. [31]
    Y.X. Chen, S.Q. Zheng, J. Zhou, P.Y. Wang, L.Q. Chen, and Y.M. Qi, Influence of H2S interaction with prestrain on the mechanical properties of high-strength X80 steel, Int. J. Hydrogen Energy, 41(2016). No. 24 p. 10412.CrossRefGoogle Scholar
  32. [32]
    P.C. Okonkwo, R.A. Shakoor, A. Soliman, and A.M.A. Mohammed, Corrosion behavior of API X-80 steel in hydrogen sulfide environment at different temperatures, [in] Corrosion 2016, Vancouver, 2016.Google Scholar
  33. [33]
    K. Shen, L. Xu, Y. Guo, J. Shi, and M.Q. Wang, Effect of microstructure on hydrogen diffusion and notch tensile strength of large steel forging, Mater. Sci Eng. A, 628(2015). p. 149.CrossRefGoogle Scholar
  34. [34]
    T. Michler, M. Lindner, U. Eberle, and J. Meusinger, Assessing hydrogen embrittlement in automotive hydrogen tanks, [in] R.P. Gangloff and B.P. Somerday eds. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, Cambridge, 2012, p. 94.CrossRefGoogle Scholar
  35. [35]
    T. Depover and K. Verbeken, The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corros. Sci, 112(2016). p. 308.CrossRefGoogle Scholar
  36. [36]
    Y.M. Qi, H.Y. Luo, S.Q. Zheng, C.F. Chen, and D.N. Wang, Effect of immersion time on the hydrogen content and tensile properties of A350LF2 steel exposed to hydrogen sulphide environments, Corros. Sci, 69(2013). p. 164.CrossRefGoogle Scholar
  37. [37]
    J. Kittel, V. Smanio, M. Fregonese, L. Garnier, and X. Lefebvre, Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: Impact of time of exposure on the extent of damage, Corros. Sci, 52(2010). No. 4 p. 1386.CrossRefGoogle Scholar
  38. [38]
    W.Y. Chu, L.J. Qiao, Y.B. Wang, and Y.H. Cheng, Quantitative study for sulfide stress corrosion cracking of tubular steel, Corrosion, 55(1999). No. 7 p. 667.CrossRefGoogle Scholar
  39. [39]
    G. Hultquist, M.J. Graham, J.L. Smialek, and B. Jönsson, Hydrogen in metals studied by thermal desorption spectroscopy (TDS), Corros. Sci, 93(2015). p. 324.CrossRefGoogle Scholar
  40. [40]
    M. Kaneko, T. Doshida, and K. Takai, Changes in mechanical properties following cyclic prestressing of martensitic steel containing vanadium carbide in presence of nondiffusible hydrogen, Mater. Sci. Eng. A, 674(2016). p. 375.CrossRefGoogle Scholar
  41. [41]
    D. Vo, A. Lipnitskii, T. Nguyen, and T.K. Nguyen, Nitrogen trapping ability of hydrogen-induced vacancy and the effect on the formation of AlN in aluminum, Coatings 7(2017). No. 6 p. 79.CrossRefGoogle Scholar
  42. [42]
    H. Sugimoto and Y. Fukai, Hydrogen-induced superabundant vacancy formation by electrochemical methods in bcc Fe: Monte Carlo simulation, Scripta Mater., 134(2017). p. 20.CrossRefGoogle Scholar
  43. [43]
    I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. A, 46(2015). No. 6 p. 2323.CrossRefGoogle Scholar
  44. [44]
    Y. Tateyama and T. Ohno, Stability and clusterization of hydrogen-vacancy complexes in α-Fe: an ab initio study, Phys. Rev. B, 67(2003), No. 17, art. No. 174105.Google Scholar
  45. [45]
    H.G.F. Wilsdorf, The ductile fracture of metals: a micro-structural viewpoint, Mater. Sci. Eng., 59(1983). No. 1 p. 1.CrossRefGoogle Scholar
  46. [46]
    H.G.F. Wilsdorf, The role of glide and twinning in the final separation of ruptured gold crystals, Acta Metall, 30(1982). No. 6 p. 1247.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingChina
  2. 2.State Key Laboratory of Tribology, Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  3. 3.JAC Volkswagen Automotive Co., Ltd.HefeiChina
  4. 4.SINOPEC Tenth Construction Company, Ltd.QingdaoChina

Personalised recommendations