Skip to main content
Log in

Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, and K.S. Novoselov, The rise of graphene, Nat. Mater., 6(2007), p.183.

    Article  CAS  Google Scholar 

  2. A.K. Geim, and A.H. MacDonald, Graphene: Exploring carbon flatland, Phys. Today, 60(2007), No. 8, p. 35.

  3. J. de La Fuente, Graphene-What is it? [2017-10-10]. https://doi.org/www.graphenea.com/pages/graphene.

    Google Scholar 

  4. I.A. Ovidȁko, Mechanical properties of graphene, Rev. Adv. Mater. Sci., 34(2013), No. 1, p. 1.

    Google Scholar 

  5. S.A.H. Kordkheili, and H. Moshrefzadeh-Sani, Mechanical properties of double-layered graphene sheets, Comput. Mater. Sci., 69(2013), p.335.

    Article  Google Scholar 

  6. R. Grantab, V.B. Shenoy, and R.S. Ruoff, Anomalous strength characteristics of tilt grain boundaries in graphene, Science, 330(2010), No. 6006, p. 946.

    Article  CAS  Google Scholar 

  7. F. Scarpa, S. Adhikari, and A.S. Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, 20(2009), No. 6, art. No. 065709.

  8. Y.Y. Zhang, and Y.T. Gu, Mechanical properties of graphene: Effects of layer number, temperature and isotope, Comput. Mater. Sci., 71(2013), p.197.

    Article  CAS  Google Scholar 

  9. H. Zhao, K. Min, and N.R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett., 9(2009), No. 8, p. 3012.

    Article  CAS  Google Scholar 

  10. W.W. Cai, A.L. Moore, Y.R. Zhu, X.S. Li, S.S. Chen, L. Shi, and R.S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10(2010), No. 5, p. 1645.

    Article  CAS  Google Scholar 

  11. C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, and A.K. Geim, Thermal conductivity of graphene in corbino membrane geometry, ACS Nano, 4(2010), No. 4, p. 1889.

    Article  CAS  Google Scholar 

  12. X.F. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K.W. Zhang, X.M. Zhao, S. Bae, C.T. Bui, R.G. Xie, J.T.L. Thong, B.H. Hong, K.P. Loh, D. Donadio, B.W. Li, and B. Özyilmaz, Length-dependent thermal conductivity in suspended single- layer graphene, Nat. Commun., 5(2014), art. No. 3689.

  13. J.U. Lee, D. Yoon, H. Kim, S.W. Lee, and H. Cheong, Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy, Phys. Rev. B, 83(2011), art. No. 081419.

  14. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(2008), No. 3, p. 902.

    Article  CAS  Google Scholar 

  15. B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, and G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol., 221(2012), p.351.

    Article  CAS  Google Scholar 

  16. J.K. Wassei, and R.B. Kaner, Graphene, a promising transparent conductor, Mater. Today, 13(2010), No. 3, p. 52.

    Article  CAS  Google Scholar 

  17. M.J. Deka, U. Baruah, and D. Chowdhury, Insight into electrical conductivity of graphene and functionalized graphene: Role of lateral dimension of graphene sheet, Mater. Chem. Phys., 163(2015), p.236.

    Article  CAS  Google Scholar 

  18. X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang, and M.S. Cao, Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets, Phys. Lett. A, 379(2015), No. 37, p. 2245.

    Article  CAS  Google Scholar 

  19. T. Ando, The electronic properties of graphene and carbon nanotubes, NPG Asia Mater., 1(2009), No. 1, p. 17.

    Article  Google Scholar 

  20. M.O. Goerbig, and N. Regnault, Theoretical aspects of the fractional quantum Hall effect in graphene, Phys. Scr., T146(2012), art. No. 014017.

    Article  Google Scholar 

  21. D.A. Abanin, I. Skachko, X. Du, E.Y. Andrei, and L.S. Levitov, Fractional quantum Hall effect in suspended graphene: Transport coefficients and electron interaction strength, Phys. Rev. B, 81(2010), art. No. 115410.

  22. R. Nandkishore, and L. Levitov, Quantum anomalous Hall state in bilayer graphene, Phys. Rev. B, 82(2010), art. No. 115124.

  23. S. Sahoo, and S. Das, Supersymmetric structure of fractional quantum Hall effect graphene, Indian J. Pure Appl. Phys., 47(2009), No. 3, p. 186.

  24. F. Finocchiaro, F. Guinea, and P. San-Jose, Quantum spin Hall effect in twisted bilayer graphene, 2D Mater., 4(2017), art. No. 025027.

  25. S. Sahoo, Quantum Hall effect in graphene: Status and prospects, Indian J. Pure Appl. Phys., 49(2011), No. 6, p. 367.

  26. S.E. Zhu, S.J. Yuan, and G.C.A.M. Janssen, Optical transmittance of multilayer graphene, Europhys. Lett., 108(2014), art. No. 17007.

    Article  Google Scholar 

  27. L.A. Falkovsky, Optical properties of graphene, J. Phys. Conf. Ser., 129(2008), art. No. 012004.

    Google Scholar 

  28. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320(2008), p.5881, p. 1308.

    Article  Google Scholar 

  29. S.S.R.K.C. Yamijala, M. Mukhopadhyay, and S.K. Pati, Linear and nonlinear optical properties of graphene quantum dots: a computational study, J. Phys. Chem. C, 119(2015), No. 21, p. 12079.

    Article  CAS  Google Scholar 

  30. L. Xiao, Y. Xu, B.L. Zhang, R. Hao, H.S. Chen, and E.P. Li, Unidirectional surface plasmons in nonreciprocal graphene, New J. Phys., 15(2013), art. No.113003.

  31. Z.W. Zheng, C.J. Zhao, S.B. Lu, Y. Chen, Y. Li, H. Zhang, and S.C. Wen, Microwave and optical saturable absorption in graphene, Opt. Express, 20(2012), No. 21, p. 23201.

    Article  CAS  Google Scholar 

  32. S.H. Xie, Y.Y. Liu, and J.Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes, Appl. Phys. Lett., 92(2008), art. No. 243121.

    Article  Google Scholar 

  33. H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I.Dlouhý, and M.J. Reece, Graphene reinforced alumina nano-composites, Carbon, 64(2013), p.359.

    Article  CAS  Google Scholar 

  34. G.B. Yadhukulakrishnan, S. Karumuri, A. Rahman, R.P. Singh, A.K. Kalkan, and S.P. Harimkar, Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites, Ceram. Int., 39(2013), No. 6, p. 6637.

    Article  CAS  Google Scholar 

  35. M. Bastwros, G.Y. Kim, C. Zhu, K. Zhang, S.R. Wang, X.D. Tang, and X.W. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Composites Part B, 60(2014), p.111.

    Article  CAS  Google Scholar 

  36. H.G.P. Kumar, and M.A. Xavior, Graphene reinforced metal matrix composite (GRMMC): a review, Procedia Eng., 97(2014), p.1033.

    Article  CAS  Google Scholar 

  37. W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, and M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 723.

    Article  CAS  Google Scholar 

  38. A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review, Int. Mater. Rev., 62(2017), No. 5, p. 241.

    Article  CAS  Google Scholar 

  39. K. Gong, Z. Pan, A.H. Korayem, L. Qiu, D. Li, F. Collins, C.M. Wang, and W.H. Duan, Reinforcing effects of graphene oxide on portland cement paste, J. Mater. Civ. Eng., 27(2015), No. 2, art. No. A4014010.

    Article  Google Scholar 

  40. S. Chuah, Z. Pan, J.G. Sanjayan, C.M. Wang, and W.H. Duan, Nano reinforced cement and concrete composites and new perspective from graphene oxide, Constr. Build. Mater., 73(2014), p.113.

    Article  Google Scholar 

  41. M.L. Cao, H.X. Zhang, and C. Zhang, Effect of graphene on mechanical properties of cement mortars, J. Cent. South Univ., 23(2016), No. 4, p. 919.

    Article  CAS  Google Scholar 

  42. V.R.J. Antonio, C.S. German, and M.M.E. Raymundo, Optimizing content graphene oxide in high strength concrete, Int. J. Sci. Res. Manage., 4(2016), No. 6, p. 4324.

    Google Scholar 

  43. P.T. Dalla, I.K. Tragazikis, D.A. Exarchos, K. Dassios, and T.E. Matikas, Cement-based materials with graphene nanophase, Proceedings of SPIE—The International Society for Optical Engineering, Portland, 2017.

    Google Scholar 

  44. S.H. Lv, S. Ting, J.J. Liu, and Q.F. Zhou, Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness, CrystEngComm, 16(2014), p.8508.

    Article  CAS  Google Scholar 

  45. B.M. Wang, R.S. Jiang, and Z.L. Wu, Investigation of the mechanical properties and microstructure of graphene nanoplatelet- cement composite, Nanomaterials, 6(2016), No. 11, p. 200.

    Article  Google Scholar 

  46. Z.Y. Lu, D.S. Hou, L.S. Meng, G.X. Sun, C. Lu, and Z.J. Li, Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties, RSC Adv., 5(2015), p.100598.

    Article  CAS  Google Scholar 

  47. G. Yakovlev, G. Pervushin, I. Maeva, J. Keriene, I. Pudov, A. Shaybadullina, A. Buryanov, A. Korzhenko, and S. Senkov, Modification of construction materials with multi-walled carbon nanotubes, Procedia Eng., 57(2013), p.407.

    Article  CAS  Google Scholar 

  48. R. Siddique, and A. Mehta, Effect of carbon nanotubes on properties of cement mortars, Constr. Build. Mater., 50(2014), p.116.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Sukadev Sahoo, Department of Physics, National Institute of Technology Durgapur, for his constant guidance and financial support for carrying out this work. We would also like to thank Dr. Supriya Pal, Dr. A.K. Samanta, and Mr. Ram Bagdi, Department of Civil Engineering, National Institute of Technology Durgapur, for providing laboratory access and assistance with testing the samples. We also acknowledge the Centre of Excellence, Technical Education Quality Improvement Programme (Phase II), National Institute of Technology Durgapur, for providing partial assistance for the preparation of graphene samples. We would also like to thank Mr. Debabrata Mandal at Indian Institute of Technology Kharagpur, for his fruitful discussions regarding the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jit Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, J., Das, D.K. Enhanced strength in novel nanocomposites prepared by reinforcing graphene in red soil and fly ash bricks. Int J Miner Metall Mater 26, 1322–1328 (2019). https://doi.org/10.1007/s12613-019-1835-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1835-4

Keywords

Navigation