Skip to main content
Log in

Azole derivatives embedded in montmorillonite clay nanocarriers as corrosion inhibitors of mild steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Azole derivatives such as 2-mercaptobenzothiazole (MBT) and 2-mercaptobenzimidazole (MBI) were introduced as corrosion inhibitors into the interlayer space of sodium montmorillonite clay (Na+-MMT). The corrosion protection behavior of mild steel in solutions containing MBT, MBI, MMT + MBT, MMT + MBI, Na+-MMT, and NaCl (3.5wt%) was evaluated using polarization and electrochemical impedance spectroscopy (EIS). Also, the release of penetrated species into the medium from the clay nanocarriers was evaluated using ultraviolet-visible (UV-Vis) spectroscopy. Small-angle X-ray scattering (SAXS) confirmed the insertion of MBT and MBI into the inner space of the clay layers and the interaction between two organic and inorganic phases. Scanning electron microscopy (SEM) was used to assess the morphology of the surface of the steel samples after the samples had been immersed for 24 h in the extraction solution. The corrosion protection in the solutions with clay nanocarriers containing MBT and MBI was better than that in solutions without MMT. The UV-Vis results showed that the release of MBI species from Na+-MMT nanocarriers in neutral pH was far lower than that of MBT species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M.C. Ismail, S. Kakooei, and A.A. Rahim, Reviews on corrosion inhibitors: A short view, Chem. Eng. Commun., 203(2016), No. 9, p. 1145.

    Article  Google Scholar 

  2. A.C. Balaskas, M. Curioni, and G.E. Thompson, Effectiveness of 2-mercaptobenzothiazole, 8-hydroxyquinoline and benzotriazole as corrosion inhibitors on AA 2024-T3 assessed by electrochemical methods, Surf. Interface Anal., 47(2015), No. 11, p. 1029.

    Article  Google Scholar 

  3. J.A. Calderón, F.A. Vásquez, and J.A. Carreño, Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions, Mater. Chem. Phys., 185(2017), p. 218.

    Article  Google Scholar 

  4. M.A. Azam and B. Suresh, Biological activities of 2-mercaptobenzothiazole derivatives: A review, Sci. Pharm., 80(2012), No. 4, p. 789.

    Article  Google Scholar 

  5. M.F. Mahdi, R.F. Al-Smaism, and N.W. Ibrahim, Synthesis, characterization and antibacterial evaluation of novel 2-mercaptobenzothiazole derivatives bearing 2-aminonicotinonitrile moiety, Eur. J. Chem., 7(2016), No. 1, p. 8.

    Article  Google Scholar 

  6. A. Kuznetsova, P.M. Domingues, T. Silva, A. Almeida, M.L. Zheludkevich, J. Tedim, M.G.S. Ferreira, and A. Cunha, Antimicrobial activity of 2-mercaptobenzothiazole released from environmentally friendly nanostructured layered double hydroxides, J. Appl. Microbiol., 122(2017), No. 5, p. 1207.

    Article  Google Scholar 

  7. M. Edraki and D. Zaarei, Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties, Asian J. Green Chem., 2(2018), No. 3, p. 171.

    Google Scholar 

  8. J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M.L. Zheludkevich, and M.G.S. Ferreira, Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers, ACS Appl. Mater. Interfaces, 2(2010), No. 5, p. 1528.

    Article  Google Scholar 

  9. K. Kermannezhad, A.N. Chermahini, M.M. Momeni, and B. Rezaei, Application of amine-functionalized MCM-41 as pH-sensitive nano container for controlled release of 2-mercaptobenzoxazole corrosion inhibitor, Chem. Eng. J., 306(2016), p. 849.

    Article  Google Scholar 

  10. Y.C. Feng and Y.F. Cheng, An intelligent coating doped with inhibitor-encapsulated nanocontainers for corrosion protection of pipeline steel, Chem. Eng. J., 315(2017), p. 537.

    Article  Google Scholar 

  11. K.A. Zahidah, S. Kakooei, M. Kermanioryani, H. Mohebbi, M.C. Ismail, and P.B. Raja, Benzimidazole-loaded halloysite nanotube as a smart coating application, Int. J. Eng. Technol., 7(2017), No. 4, p. 243.

    Google Scholar 

  12. D. Yu, J. Wang, W. Hu, and R. Guo, Preparation and controlled release behavior of halloysite/ 2-mercaptobenzothiazole nanocomposite with calcined halloysite as nanocontainer, Mater. Des., 129(2017), p. 103.

    Article  Google Scholar 

  13. A. Joshi, E. Abdullayev, A. Vasiliev, O. Volkova, and Y. Lvov, Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors, Langmuir, 29(2012), No. 24, p. 7439.

    Article  Google Scholar 

  14. B.C. Zhong, Z.X. Jia, Y.F. Luo, B.C. Guo, and D.M. Jia, Preparation of halloysite nanotubes supported 2-mercaptobenzimidazole and its application in natural rubber, Composites Part A, 73(2015), p. 63.

    Article  Google Scholar 

  15. K.V. Yeole, I.P. Agarwal, and S.T. Mhaske, The effect of carbon nanotubes loaded with 2-mercaptobenzothiazole in epoxy-based coatings, J. Coat. Technol. Res., 13(2016), No. 1, p. 31.

    Article  Google Scholar 

  16. Y.H. Dong, F. Wang, and Q. Zhou, Protective behaviors of 2-mercaptobenzothiazole intercalated Zn-Al-layered double hydroxide coating, J. Coat. Technol. Res., 11(2014), No. 5, p. 793.

    Article  Google Scholar 

  17. R.J. Marathe, A.B. Chaudhari, R.K. Hedaoo, D. Sohn, V.R. Chaudhari, and V.V. Gite, Urea formaldehyde (UF) microcapsules loaded with corrosion inhibitor for enhancing the anti-corrosive property of acrylic-based multifunctional PU coatings, RSC Adv., 5(2015), No. 20, p. 15539.

    Article  Google Scholar 

  18. F. Maia, K.A. Yasakau, J. Carneiro, S. Kallip, J. Tedim, T. Henriques, A. Cabral, J. Venâncio, M.L. Zheludkevich, and M.G.S. Ferreira, Corrosion protection of AA2024 by sol-gel coatings modified with MBT-loaded polyurea microcapsules, Chem. Eng. J., 283(2016), p. 1108.

    Article  Google Scholar 

  19. A. Rahimi and S. Amiri, Anticorrosion hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors, J. Coat. Technol. Res., 12(2015), No. 3, p. 587.

    Article  Google Scholar 

  20. A. Altin, M. Rohwerder, and A. Erbe, Cyclodextrins as carriers for organic corrosion inhibitors in organic coatings, J. Electrochem. Soc., 164(2017), No. 4, p. 128.

    Article  Google Scholar 

  21. A. Rahimi and S. Amiri, Self-healing anticorrosion coating containing 2-mercaptobenzothiazole and 2-mercaptobenzimidazole nanocapsules, J. Polym. Res., 23(2016), No. 4, p. 83.

    Article  Google Scholar 

  22. M. Edraki and M. Banimahd Keivani, Study on the optical and rheological properties of polymer-layered silicate nanocomposites, J. Phys. Theor. Chem. IAU Iran, 10(2013), No. 1, p. 69.

    Google Scholar 

  23. A.H. Navarchian, M. Joulazadeh, and F. Karimi, Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces, Prog. Org. Coat., 77(2014), No. 2, p. 347.

    Article  Google Scholar 

  24. A. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh, and M. Rostami, The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating, Corros. Sci., 94(2015), p. 207.

    Article  Google Scholar 

  25. N. Mehrabian and A.A. Sarabi Dariani, Anticorrosive performance of epoxy/modified clay nanocomposites, Polym. Compos., 39(2018), E2134. DOI:10.1002/pc.24492.

    Article  Google Scholar 

  26. P. Pokorny, J. Kolisko, L. Balik, and P. Novak, Effect of chemical composition of steel on the structure of hot-dip galvanized coating, Metalurgija, 55(2016), No. 1, p. 115.

    Google Scholar 

  27. N. Narimani, B. Zarei, H. Pouraliakbar, and G. Khalaj, Predictions of corrosion current density and potential by using chemical composition and corrosion cell characteristics in microalloyed pipeline steels, Measurement, 62(2015), p. 97.

    Article  Google Scholar 

  28. G. Khalaj, H. Pouraliakbar, N. Arab, and M. Nazerfakhari, Correlation of passivation current density and potential by using chemical composition and corrosion cell characteristics in HSLA steels, Measurement, 75(2015), p. 5.

    Article  Google Scholar 

  29. H. Pouraliakbar, G. Khalaj, M.R. Jandaghi, and M.J. Khalaj, Study on the correlation of toughness with chemical composition and tensile test results in microalloyed API pipeline steels, J. Min. Metall. Sect. B, 51(2015), No. 2, p. 173.

    Article  Google Scholar 

  30. K.D. Ralston and N. Birbilis, Effect of grain size on corrosion: A review, Corrosion, 66(2010), No. 7, p. 075005.

    Article  Google Scholar 

  31. H.W. Wang and C. Yu, Effect of grain size on corrosion properties of low alloy steel under H2S/CO2 environment, Int. J. Electrochem. Sci., 12(2017), No. 5, p. 4327.

    Article  Google Scholar 

  32. P.K. Rai, S. Shekhar, and K. Mondal, Development of gradient microstructure in mild steel and grain size dependence of its electrochemical response, Corros. Sci., 138(2018), p. 85.

    Article  Google Scholar 

  33. V.M. Abbasov, S.A. Mamedxanova, H.M.A. El-Lateef, L.I. Aliyeva, T.A. Ismayilov, M.C. Ilham, L.M. Afandiyeva, O.A. Aydamirov, and F.A. Amirov, The CO2 corrosion inhibition of carbon steel C1018 by some novel complex surfactants based on petroleum acids and nitrogen-containing compounds, Adv. Mater. Corros., 2(2013), No. 1, p. 26.

    Google Scholar 

  34. E. Abdullayev, V. Abbasov, A. Tursunbayeva, V. Portnov, H. Ibrahimov, G. Mukhtarova, and Y. Lvov, Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys, ACS Appl. Mater. Interfaces, 5(2013), No. 10, p. 4464.

    Article  Google Scholar 

  35. N. Goudarzi and H. Farahani, Investigation on 2-mercaptobenzothiazole behavior as corrosion inhibitor for 316-stainless steel in acidic media, Anti-Corros. Meth. Mater., 61(2013), No. 1, p. 20.

    Article  Google Scholar 

  36. G. Žerjav, A. Lanzutti, F. Andreatta, L. Fedrizzi, and I. Milošev, Characterization of self-assembled layers made with stearic acid, benzotriazole, or 2-mercaptobenzimidazole on surface of copper for corrosion protection in simulated urban rain, Mater. Corros., 68(2017), No. 1, p. 30.

    Article  Google Scholar 

  37. K. Xhanari and M. Finšgar, The first electrochemical and surface analysis of 2-aminobenzimidazole as a corrosion inhibitor for copper in chloride solution, New J. Chem., 41(2017), No. 15, p. 7151.

    Article  Google Scholar 

  38. A.R. Chandrasekaran, C.Y. Jia, C.S. Theng, T. Muniandy, S. Muralidharan, and S.A. Dhanaraj, Invitro studies and evaluation of metformin marketed tablets-Malaysia, J. Appl. Pharm. Sci., 1(2011), No. 5, p. 214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Zaarei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edraki, M., Zaarei, D. Azole derivatives embedded in montmorillonite clay nanocarriers as corrosion inhibitors of mild steel. Int J Miner Metall Mater 26, 86–97 (2019). https://doi.org/10.1007/s12613-019-1712-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1712-1

Keywords

Navigation