Skip to main content

Advertisement

Log in

In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings under 808-nm light irradiation

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bio-inertness and post-surgery infection on titanium (Ti) are the main causes of failure of biomedical implants in vivo. Near-infrared (NIR) photoactivated antibacterial therapy including photothermal and photodynamic therapies has attracted increasing attention due to the high bactericidal efficiency and little side effects. Although micro-arc oxidation (MAO) is an effective method to improve the biological activity of Ti implants, the porous TiO2 coatings prepared by MAO do not respond to near-infrared (NIR) light to kill bacteria by the photothermal and photodynamic effects. In this work, graphene oxide (GO)-modified TiO2 coatings (TiO2/GO) are prepared on Ti to improve the photothermal and photodynamic ability of the MAO coatings. The TiO2/GO coatings exhibit excellent antibacterial activity both in vitro and in vivo against Streptococcus mutans (S. mutans) under 808-nm NIR light irradiation due to the synergistic effects rendered by hyperthermia and reactive oxygen species (ROS). The NIR light-responsive antibacterial MAO coatings have large potential in combating implant-associated infections in clinical applications.

Graphic abstract

摘要 (Chinese abstract)

生物惰性和术后感染是钛植入体植入失败的主要原因。近红外光激发 (包括光热和光动力) 抗菌由于具有高效杀菌和较少的副作用引起广泛关注。微弧氧化可以有效改善钛植入体生物活性, 但制备的多孔TiO2无法被近红外光激发产生光热和光动力杀菌。针对此问题, 本文对微弧氧化制备的TiO2涂层进行了氧化石墨烯改性。改性后的涂层在近红外 808 nm激光照射下, 由于局部过热与活性氧协同作用, 展现出优良的体外和体内抗链球菌性能。这种具有近红外光响应抗菌能力的微弧氧化涂层在临床上治疗植入体相关感染有着很大潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Vyas N, Grewal M, Kuehne SA, Sammons RL, Walmsley AD. High speed imaging of biofilm removal from a dental implant model using ultrasonic cavitation. Dent Mater. 2020;36(6):733.

    Article  CAS  Google Scholar 

  2. Bai XX, Lin CC, Wang YY, Ma J, Wang X, Yao XH, Tang B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent Mater. 2020;36(6):794.

    Article  CAS  Google Scholar 

  3. Huang YS, Huang HH. Effects of clinical dental implant abutment materials and their surface characteristics on initial bacterial adhesion. Rare Met. 2019;38(6):512.

    Article  CAS  Google Scholar 

  4. Zhao LZ, Wang HR, Huo KF, Cai LY, Zhang WR, Ni HW, Zhang YM, Wu ZF, Chu PK. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32(24):5706.

    Article  CAS  Google Scholar 

  5. Chua SL, Yam JKH, Hao PH, Adav SS, Salido MM, Liu Y, Givskov M, Sze SK, Tolker-Nielsen T, Yang L. Selective labelling and eradication of antibiotic-tolerant bacterial populations in pseudomonas aeruginosa biofilms. Nat Commun. 2016;7(1):10750.

    Article  CAS  Google Scholar 

  6. Duncan B, Li XN, Landis RF, Kim ST, Gupta A, Wang LS, Ramanathan R, Tang R, Boerth JA, Rotello VM. Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano. 2015;9(8):7775.

    Article  CAS  Google Scholar 

  7. Neoh KG, Hu XF, Zheng D, Kang ET. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials. 2012;33(10):2813.

    Article  CAS  Google Scholar 

  8. Zhang L, Guo JQ, Huang XY, Zhang YN, Han Y. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. J Mater Chem B. 2016;4(21):3788.

    Article  CAS  Google Scholar 

  9. Gao A, Hang RQ, Huang XB, Zhao LZ, Zhang XY, Wang L, Tang B, Ma SL, Chu PK. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35(13):4223.

    Article  CAS  Google Scholar 

  10. Tan L, Li J, Liu XM, Cui ZD, Yang XJ, Zhu SL, Li ZY, Yuan XB, Zheng YF, Yeung KWK, Pan HB, Wang XB, Wu SL. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv Mater. 2018;30(31):1801808.

    Article  Google Scholar 

  11. Yuan Z, Tao BL, He Y, Liu J, Lin CC, Shen XK, Ding Y, Yu YL, Mu CY, Liu P, Cai KY. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials. 2019;217:119290.

    Article  CAS  Google Scholar 

  12. Zhang XY, Zhang GN, Chai MZ, Yao XH, Chen WY, Chu PK. Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO2 nanorod arrays for safe biofilm eradication on implant. Bioact Mater. 2021;6(1):12.

    Article  CAS  Google Scholar 

  13. Zhang GN, Yang YQ, Shi J, Yao XH, Chen WY, Wei XC, Zhang XY, Chu PK. Near-infrared light II-assisted rapid biofilm elimination platform for bone implants at mild temperature. Biomaterials. 2021;269:120634.

    Article  CAS  Google Scholar 

  14. Wei N, Cui HZ, Song Q, Zhang LQ, Song XJ, Wang K, Zhang YF, Li J, Wen J, Tian J. Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation. Appl Catal B Environ. 2016;198:83.

    Article  CAS  Google Scholar 

  15. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin J Rare Met. 2020;44(6):609.

    Google Scholar 

  16. Ji HW, Sun HJ, Qu XG. Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev. 2016;105:176.

    Article  CAS  Google Scholar 

  17. Dellieu L, Lawarée E, Reckinger N, Didembourg C, Letesson JJ, Sarrazin M, Deparis O, Matroule JY, Colomer JF. Do CVD grown graphene films have antibacterial activity on metallic substrates? Carbon. 2015;84:310.

    Article  CAS  Google Scholar 

  18. Santos CM, Tria MCR, Vergara RAMV, Ahmed F, Advincula RC, Rodrigues DF. Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem Commun. 2011;47(31):8892.

    Article  CAS  Google Scholar 

  19. Yang MG, Liu H, Qiu CJ, Itasunskyi I, Coy E, Moya S, Wang Z, Wu WW, Zhao XB, Wang GC. Electron transfer correlated antibacterial activity of biocompatible graphene nanosheets-TiO2 coatings. Carbon. 2020;166(30):350.

    Article  CAS  Google Scholar 

  20. Zhou K, Yu P, Shi XJ, Ling TX, Zeng WN, Chen AJ, Yang W, Zhou ZK. Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595.

    Article  CAS  Google Scholar 

  21. Qiu JJ, Guo JS, Geng H, Qian WH, Liu XY. Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells. Carbon. 2017;125:227.

    Article  CAS  Google Scholar 

  22. Zhang GN, Zhang XY, Yang YQ, Zhang HY, Shi J, Yao XH, Zhang XY. Near-infrared light-triggered therapy to combat bacterial biofilm infections by MoSe2/TiO2 nanorod arrays on bone implants. Adv Mater Interfaces. 2019;7(1):1901706.

    Article  Google Scholar 

  23. Wang XP, Liu ZM, Ye XP, Hu K, Zhong HQ, Yuan XC, Xiong HL, Guo ZY. A facile one-pot method to two kinds of graphene oxide-based hydrogels with broad-spectrum antimicrobial properties. Chem Eng J. 2015;260:331.

    Article  CAS  Google Scholar 

  24. Zhang C, Wang JM, Chi RF, Shi J, Yang YQ, Zhang XY. Reduced graphene oxide loaded with MoS2 and Ag3PO4 nanoparticles/PVA interpenetrating hydrogels for improved mechanical and antibacterial properties. Mater Des. 2019;183:108166.

    Article  CAS  Google Scholar 

  25. Panda S, Rout TK, Prusty AD, Ajayan PM, Nayak S. Electron transfer directed antibacterial properties of graphene oxide on metals. Adv Mater. 2018;30(7):1702149.

    Article  Google Scholar 

  26. Feng XJ, Feng L, Jin MH, Zhai J, Jiang L, Zhu DB. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J Am Chem Soc. 2004;126(1):62.

    Article  CAS  Google Scholar 

  27. Chen YQ, Zhang X, Zhao S, Maitz MF, Zhang WT, Yang S, Mao JL, Huang N, Wan GJ. In situ incorporation of heparin/bivalirudin into a phytic acid coating on biodegradable magnesium with improved anticorrosion and biocompatible properties. J Mater Chem B. 2017;5(22):4162.

    Article  CAS  Google Scholar 

  28. Xu ZQ, Li M, Li X, Liu XM, Ma F, Wu SL, Yeung KWK, Han Y, Chu PK. Antibacterial activity of silver doped titanate nanowires on Ti implants. ACS Appl Mater Interfaces. 2016;8(26):16584.

    Article  CAS  Google Scholar 

  29. Liu YL, Ai KL, Liu JH, Mo D, He YY, Lu LH. An efficient near infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater. 2013;25(9):1353.

    Article  CAS  Google Scholar 

  30. Jianf QS, Derami HG, Ghim D, Cao SS, Jun YS, Singamaneni S. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J Mater Chem A. 2017;5(35):18397.

    Article  Google Scholar 

  31. Zhang XY, Zhang C, Yang YQ, Zhang HY, Huang XB, Hang RQ, Yao XH. Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. Chem Eng J. 2019;374:596.

    Article  CAS  Google Scholar 

  32. Feng ZZ, Liu XM, Tan L, Cui ZD, Yang XJ, Li ZY, Zheng YF, Yeung KWK, Wu SL. Electrophoretic deposited stable chitosan@MoS2coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small. 2018;14(21):1704347.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31870934), the Major Projects in Research and Development of Shanxi (No. 201803D421090), City University of Hong Kong Strategic Research Grant (No. 7005264), and Guangdong-Hong Kong Technology Cooperation Funding Scheme GHP/085/18SZ (No. CityU 9440230)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Wen An or Xiang-Yu Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, MZ., An, MW., Zhang, XY. et al. In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO2 coatings under 808-nm light irradiation. Rare Met. 41, 540–545 (2022). https://doi.org/10.1007/s12598-021-01754-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01754-9

Keywords

Navigation