Skip to main content
Log in

Magnetic properties of M-type strontium ferrites with different heat treatment conditions

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effects of heat treatment conditions on the magnetic properties and microstructure of M-type strontium ferrite according to calcination temperature were analyzed. Strontium ferrite Sr0.06Ca0.52La0.52Fe11.68Co0.22O19 magnetic powder was prepared by a standard ceramic process. During experiments, the calcination temperature was varied from 1180 to 1260 °C, and sintering temperature was fixed. While the M-phase (SrFe12O19) existed with hematite (Fe2O3) in the powder calcined at below 1220 °C, the pure M-phase was observed in the powder calcined at over 1240 °C. With an increase in the calcination temperature, the magnetization of the calcined powder increases, meanwhile, the coercivity decreases. The magnetization is improved by decreasing the lattice constant c and activating the Fe3+–O–Fe3+ superexchange interaction, and the coercivity decreases by the large particle sizes due to the grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qiu J, Zhang Q, Gu M. Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J Appl Phys. 2005;98(10):103905.

    Article  Google Scholar 

  2. Dishovske N, Petkov A, Nedkov I. Hexaferrite contribution to microwave absorbers characteristics. IEEE Trans Magn. 1994;30(2):969.

    Article  Google Scholar 

  3. Langhof N, Göbbels M. Hexaferrites and phase relations in the iron-rich part of the system Sr–La–Co–Fe–O. J Solid State Chem. 2009;182(10):2725.

    Article  CAS  Google Scholar 

  4. Shirk BT, Bussem WR. Temperature dependence of M s and K 1 of BaFe12O19 and SrFe12O19 single crystals. J Appl Phys. 1969;40:1294.

    Article  CAS  Google Scholar 

  5. Topfer J, Schwarzer S, Senz S, Hesse D. Influence of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite. J Eur Ceram Soc. 2005;25:1681.

    Article  Google Scholar 

  6. Zi ZF, Liu HY, Liu YN, Fang L, Liu QC, Dai JM, Zhu XB, Sun YP. Magnetic properties of c-axis oriented Sr0.8La0.2Fe11.8Co0.2O19 ferrite film prepared by chemical solution deposition. J Magn Magn Mater. 2010;322(22):3638.

    Article  CAS  Google Scholar 

  7. Morisako A, Liu X, Matsumoto M. The effect of underlayer for Ba-ferrite sputtered films on-axis orientation. J Appl Phys. 1997;81:4374.

    Article  CAS  Google Scholar 

  8. Wane I, Bassudou A, Cosset F, Celerier A, Girault C, Decossas JL, Vereille JC. Thick barium hexaferrite (Ba-M) films prepared by electron-beam evaporation for microwave application. J Magn Magn Mater. 2000;211(1–3):309.

    Article  CAS  Google Scholar 

  9. Oliver SA, Yoon SD, Kozulin I, Chen ML, Vittoria C. Growth and characterization of thick oriented barium hexaferrite films on MgO (111) substrates. Appl Phys Lett. 2000;76(24):3612.

    Article  CAS  Google Scholar 

  10. Sözeri H. Effect of palletization on magnetic properties of BaFe12O19. J Alloys Compd. 2009;486(1–2):809.

    Article  Google Scholar 

  11. Imanura M, Ito Y, Fujiki M, Hasegawa T, Kubaota H, Fujiwara T. Barium ferrite perpendicular recording flexible disk drive. IEEE Trans Magn. 1986;22(5):1185.

    Article  Google Scholar 

  12. Fujiwara T. Barium ferrite media for perpendicular recording. IEEE Trans. 1985;21(5):1480.

    Google Scholar 

  13. Yamamori K, Suzuki T, Fujiwara T. High density recording characteristics for Ba-ferrite flexible disks. IEEE Trans Magn. 1986;22(5):1188.

    Article  Google Scholar 

  14. Niem PA, Chau N, Luong NH, Minh DL. Influence of La doping on the properties of SrBa hexagonal ferrites. Phys B. 2003;327(2–4):266.

    Article  CAS  Google Scholar 

  15. Yamamoto H, Nagakura M, Tarada H. Magnetic properties of anisotropic Sr–La system ferrite magnets. IEEE Trans Magn. 1990;26(3):1144.

    Article  CAS  Google Scholar 

  16. Taguchi H, Takeishi T, Suwa K, Masuzawa K, Minachi Y. High energy ferrite magnets. J Phys IV (Proc). 1997;7(C1):311.

    Google Scholar 

  17. Dung NK, Chau N, Cong BT, Minh DL, Phuc NX. The influence of La2O3 substitution on the structure and properties of Sr hexaferrite. J Phys IV (Proc). 1997;7(C1):313.

    Google Scholar 

  18. Hwang TY, Lee J, Lim HR, Jeong SJ, An GH, Kim J, Choa YH. Synthesis and magnetic properties of La3+–Co2+ substituted strontium ferrite particles using modified spray pyrolysis-calcination method. Ceram Int. 2017;43(4):3879.

    Article  CAS  Google Scholar 

  19. Yang Y, Wang F, Shao J, Liu X, Feng S, Yang J. Influence of calcium content on the structural and magnetic properties of Sr0.70−xCaxLa0.30Fe11.75Zn0.25O19 hexagonal ferrites. J Magn Magn Mater. 2016;401:1039.

    Article  CAS  Google Scholar 

  20. Sharma P, Verma A, Sidhu RK, Pandey OP. Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design. J Magn Magn Mater. 2006;307(1):157.

    Article  CAS  Google Scholar 

  21. Rezlescu N, Doroftei C, Rezlescu E, Popa PD. The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19. J Alloys Compd. 2008;451:492.

    Article  CAS  Google Scholar 

  22. Onreabroy W, Papato K, Rujijanagul G, Pengpat K, Tunkasiri T. Study of strontium ferrites substituted by lanthanum on the structural and magnetic properties. Ceram Int. 2012;38(S1):S415.

    Article  CAS  Google Scholar 

  23. Teh GB, Wong YC, Tilley RD. Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. J Magn Magn Mater. 2011;323(17):2318.

    Article  CAS  Google Scholar 

  24. Yang Y, Liu X, Jin D. Influence of heat treatment temperatures on structural and magnetic properties of Sr0.50Ca0.20La0.30Fe11.15Co0.25O19 hexagonal ferrites. J Magn Magn Mater. 2014;364:11.

    Article  CAS  Google Scholar 

  25. Sharma P, Verma A, Sidhu RK, Pandey OP. Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets. J Alloy Compd. 2003;361(1–2):257.

    Article  CAS  Google Scholar 

  26. Moskvin AS, Ovanesyan NS, Trukhtanov VA. Angular dependence of the superexchange interaction Fe3+–O2−–Cr3+. Hyperfine Interact. 1975;1(1):265.

    Article  CAS  Google Scholar 

  27. Morel A, Le Breton JM, Kreisel J, Wiesinger G, Kools F, Tenaud P. Sublattice occupation in Sr1−xLaxFe12−xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy. J Magn Magn Mater. 2002;242–245:1405.

    Article  Google Scholar 

  28. Lechevallier L, Le Breton JM, Teillet J, Morel A, Kools F, Tenaud P. Mössbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys B. 2003;327(2–4):135.

    Article  CAS  Google Scholar 

  29. Pullar RC. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci. 2012;57(7):1191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungmook Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, N., Park, S., Kim, Y. et al. Magnetic properties of M-type strontium ferrites with different heat treatment conditions. Rare Met. 39, 84–88 (2020). https://doi.org/10.1007/s12598-019-01251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01251-0

Keywords

Navigation