Rare Metals

, Volume 39, Issue 1, pp 84–88 | Cite as

Magnetic properties of M-type strontium ferrites with different heat treatment conditions

  • Namji Oh
  • Seungyeon Park
  • Yongwan Kim
  • Hyukmin Kwon
  • Sangsub Kim
  • Kyoungmook LimEmail author


The effects of heat treatment conditions on the magnetic properties and microstructure of M-type strontium ferrite according to calcination temperature were analyzed. Strontium ferrite Sr0.06Ca0.52La0.52Fe11.68Co0.22O19 magnetic powder was prepared by a standard ceramic process. During experiments, the calcination temperature was varied from 1180 to 1260 °C, and sintering temperature was fixed. While the M-phase (SrFe12O19) existed with hematite (Fe2O3) in the powder calcined at below 1220 °C, the pure M-phase was observed in the powder calcined at over 1240 °C. With an increase in the calcination temperature, the magnetization of the calcined powder increases, meanwhile, the coercivity decreases. The magnetization is improved by decreasing the lattice constant c and activating the Fe3+–O–Fe3+ superexchange interaction, and the coercivity decreases by the large particle sizes due to the grain growth.


M-type ferrites Standard ceramic process Phase analysis Superexchange Permanent magnet 


  1. [1]
    Qiu J, Zhang Q, Gu M. Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J Appl Phys. 2005;98(10):103905.CrossRefGoogle Scholar
  2. [2]
    Dishovske N, Petkov A, Nedkov I. Hexaferrite contribution to microwave absorbers characteristics. IEEE Trans Magn. 1994;30(2):969.CrossRefGoogle Scholar
  3. [3]
    Langhof N, Göbbels M. Hexaferrites and phase relations in the iron-rich part of the system Sr–La–Co–Fe–O. J Solid State Chem. 2009;182(10):2725.CrossRefGoogle Scholar
  4. [4]
    Shirk BT, Bussem WR. Temperature dependence of M s and K 1 of BaFe12O19 and SrFe12O19 single crystals. J Appl Phys. 1969;40:1294.CrossRefGoogle Scholar
  5. [5]
    Topfer J, Schwarzer S, Senz S, Hesse D. Influence of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite. J Eur Ceram Soc. 2005;25:1681.CrossRefGoogle Scholar
  6. [6]
    Zi ZF, Liu HY, Liu YN, Fang L, Liu QC, Dai JM, Zhu XB, Sun YP. Magnetic properties of c-axis oriented Sr0.8La0.2Fe11.8Co0.2O19 ferrite film prepared by chemical solution deposition. J Magn Magn Mater. 2010;322(22):3638.CrossRefGoogle Scholar
  7. [7]
    Morisako A, Liu X, Matsumoto M. The effect of underlayer for Ba-ferrite sputtered films on-axis orientation. J Appl Phys. 1997;81:4374.CrossRefGoogle Scholar
  8. [8]
    Wane I, Bassudou A, Cosset F, Celerier A, Girault C, Decossas JL, Vereille JC. Thick barium hexaferrite (Ba-M) films prepared by electron-beam evaporation for microwave application. J Magn Magn Mater. 2000;211(1–3):309.CrossRefGoogle Scholar
  9. [9]
    Oliver SA, Yoon SD, Kozulin I, Chen ML, Vittoria C. Growth and characterization of thick oriented barium hexaferrite films on MgO (111) substrates. Appl Phys Lett. 2000;76(24):3612.CrossRefGoogle Scholar
  10. [10]
    Sözeri H. Effect of palletization on magnetic properties of BaFe12O19. J Alloys Compd. 2009;486(1–2):809.CrossRefGoogle Scholar
  11. [11]
    Imanura M, Ito Y, Fujiki M, Hasegawa T, Kubaota H, Fujiwara T. Barium ferrite perpendicular recording flexible disk drive. IEEE Trans Magn. 1986;22(5):1185.CrossRefGoogle Scholar
  12. [12]
    Fujiwara T. Barium ferrite media for perpendicular recording. IEEE Trans. 1985;21(5):1480.Google Scholar
  13. [13]
    Yamamori K, Suzuki T, Fujiwara T. High density recording characteristics for Ba-ferrite flexible disks. IEEE Trans Magn. 1986;22(5):1188.CrossRefGoogle Scholar
  14. [14]
    Niem PA, Chau N, Luong NH, Minh DL. Influence of La doping on the properties of SrBa hexagonal ferrites. Phys B. 2003;327(2–4):266.CrossRefGoogle Scholar
  15. [15]
    Yamamoto H, Nagakura M, Tarada H. Magnetic properties of anisotropic Sr–La system ferrite magnets. IEEE Trans Magn. 1990;26(3):1144.CrossRefGoogle Scholar
  16. [16]
    Taguchi H, Takeishi T, Suwa K, Masuzawa K, Minachi Y. High energy ferrite magnets. J Phys IV (Proc). 1997;7(C1):311.Google Scholar
  17. [17]
    Dung NK, Chau N, Cong BT, Minh DL, Phuc NX. The influence of La2O3 substitution on the structure and properties of Sr hexaferrite. J Phys IV (Proc). 1997;7(C1):313.Google Scholar
  18. [18]
    Hwang TY, Lee J, Lim HR, Jeong SJ, An GH, Kim J, Choa YH. Synthesis and magnetic properties of La3+–Co2+ substituted strontium ferrite particles using modified spray pyrolysis-calcination method. Ceram Int. 2017;43(4):3879.CrossRefGoogle Scholar
  19. [19]
    Yang Y, Wang F, Shao J, Liu X, Feng S, Yang J. Influence of calcium content on the structural and magnetic properties of Sr0.70−xCaxLa0.30Fe11.75Zn0.25O19 hexagonal ferrites. J Magn Magn Mater. 2016;401:1039.CrossRefGoogle Scholar
  20. [20]
    Sharma P, Verma A, Sidhu RK, Pandey OP. Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design. J Magn Magn Mater. 2006;307(1):157.CrossRefGoogle Scholar
  21. [21]
    Rezlescu N, Doroftei C, Rezlescu E, Popa PD. The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19. J Alloys Compd. 2008;451:492.CrossRefGoogle Scholar
  22. [22]
    Onreabroy W, Papato K, Rujijanagul G, Pengpat K, Tunkasiri T. Study of strontium ferrites substituted by lanthanum on the structural and magnetic properties. Ceram Int. 2012;38(S1):S415.CrossRefGoogle Scholar
  23. [23]
    Teh GB, Wong YC, Tilley RD. Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. J Magn Magn Mater. 2011;323(17):2318.CrossRefGoogle Scholar
  24. [24]
    Yang Y, Liu X, Jin D. Influence of heat treatment temperatures on structural and magnetic properties of Sr0.50Ca0.20La0.30Fe11.15Co0.25O19 hexagonal ferrites. J Magn Magn Mater. 2014;364:11.CrossRefGoogle Scholar
  25. [25]
    Sharma P, Verma A, Sidhu RK, Pandey OP. Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets. J Alloy Compd. 2003;361(1–2):257.CrossRefGoogle Scholar
  26. [26]
    Moskvin AS, Ovanesyan NS, Trukhtanov VA. Angular dependence of the superexchange interaction Fe3+–O2−–Cr3+. Hyperfine Interact. 1975;1(1):265.CrossRefGoogle Scholar
  27. [27]
    Morel A, Le Breton JM, Kreisel J, Wiesinger G, Kools F, Tenaud P. Sublattice occupation in Sr1−xLaxFe12−xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy. J Magn Magn Mater. 2002;242–245:1405.CrossRefGoogle Scholar
  28. [28]
    Lechevallier L, Le Breton JM, Teillet J, Morel A, Kools F, Tenaud P. Mössbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys B. 2003;327(2–4):135.CrossRefGoogle Scholar
  29. [29]
    Pullar RC. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci. 2012;57(7):1191.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Korea Institute of Industrial TechnologyIncheonRepublic of Korea
  2. 2.Ugimag KoreaCheongjuRepublic of Korea
  3. 3.Department of Materials Science and EngineeringInha UniversityIncheonRepublic of Korea

Personalised recommendations