Skip to main content
Log in

Deep drawing of aluminum alloy 7075 using hot stamping

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, simulations of deep drawing tests at elevated temperatures were carried out with experimental validation. The aim of this work was to study the effect of process parameters on formability and mechanical properties of aluminum alloy 7075 in hot stamping process. Process parameters, including blank temperature, stamping speed, blank holder force and friction coefficient, were studied. Stamping tests were conducted at temperatures between 350 and 500 °C, blank holder force between 0 and 10 kN, stamping speed between 50 and 150 mm·s−1, and friction coefficient between 0.1 and 0.3. Based on the analysis, it is shown that thickness homogeneity could be improved when the blank is formed at lower temperature, lower blank holder force and lower friction coefficient. Formability could be improved when the blank was well lubricated at about 400 °C. Formability at stamping speed 50 mm·s−1 is far better than those at other speeds. The mechanical property analysis shows that the hot stamping process could make the formed part to obtain high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sun HT, Wang J, Shen GZ, Hu P. Application of warm forming aluminum alloy parts for automotive body based on impact. Int J Automot Techn. 2013;14(4):605.

    Article  Google Scholar 

  2. Field Iii FR, Clark JP. A practical road to lightweight cars. Technol Rev. 1996;100(1):28.

    Google Scholar 

  3. Liu YJ, Liu Y, Chen JN. The impact of the Chinese automotive industry: scenarios based on the national environmental goals. J Clean Prod. 2015;96(SI):102.

    Article  Google Scholar 

  4. Hirsch J. Recent development in aluminium for automotive applications. T Nonferr Metal Soc. 2014;24(7):1995.

    Article  Google Scholar 

  5. Pinlung SB. 7xxx aluminum sheets for automotive applications. Windsor: University of Windsor; 2015. 2.

    Google Scholar 

  6. Tajally M, Emadoddin E. Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets. Mater Design. 2011;32(3):1594.

    Article  Google Scholar 

  7. Zhang J, Fan J, Liu Y, Feng W. Superplasticity of 6016 aluminum alloy at elevated temperatures. Rare Met. 2015;34(6):387.

    Article  Google Scholar 

  8. Karbasian H, Tekkaya AE. A review on hot stamping. J Mater Process Tech. 2010;210(15):2103.

    Article  Google Scholar 

  9. Wang C, Tang Z, Mei H, Wang L, Li R, Li D. Formation of spheroidal microstructure in semi-solid state and thixoforming of 7075 high strength aluminum alloy. Rare Met. 2015;34(10):710.

    Article  Google Scholar 

  10. Foster A, Dean TA, Lin J. Process for forming aluminium alloy sheet components. European Patent; EP2324137. 2013.

  11. Garrett RP, Lin J, Dean TA. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling. Int J Plast. 2005;21(8):1640.

    Article  Google Scholar 

  12. Yan L, Zhang Y, Xiong B, Li X, Li Z, Liu H, Huang S, Zhao G. Mechanical properties, microstructure and surface quality of Al–1.2Mg–0.6Si–0.2Cu alloy after solution heat treatment. Rare Met. 2015;. doi:10.1007/s12598-015-0623-1.

    Google Scholar 

  13. Yuan SJ, Fan XB, He ZB. Hot forming-quenching integrated process with cold-hot dies for 2A12 aluminum alloy sheet. Procedia Eng. 2014;81:1780.

    Article  Google Scholar 

  14. Fan X, He Z, Yuan S, Zheng K. Experimental investigation on hot forming–quenching integrated process of 6A02 aluminum alloy sheet. Mat Sci Eng A. 2013;573:154.

    Article  Google Scholar 

  15. Mohamed MS, Foster AD, Lin J, Balint DS, Dean TA. Investigation of deformation and failure features in hot stamping of AA6082: experimentation and modelling. Int J Mach Tool Manu. 2012;53(1):27.

    Article  Google Scholar 

  16. Wang L, Strangwood M, Balint D, Lin J, Dean TA. Formability and failure mechanisms of AA2024 under hot forming conditions. Mat Sci Eng A. 2011;528(6):2648.

    Article  Google Scholar 

  17. El Fakir O, Wang L, Balint D, Dear JP, Lin J, Dean TA. Numerical study of the solution heat treatment, forming, and in-die quenching (HFQ) process on AA5754. Int J Mach Tool Manu. 2014;87:39.

    Article  Google Scholar 

  18. Bariani PF, Bruschi S, Ghiotti A, Michieletto F. Hot stamping of AA5083 aluminium alloy sheets. CIRP Ann Manuf Technol. 2013;62:251.

    Article  Google Scholar 

  19. Zhang Y, Zhu P, Chen GL. Lightweight design of automotive front side rail based on robust optimisation. Thin Wall Struct. 2007;45(7):670.

    Article  Google Scholar 

  20. Harrison NR, Luckey SG. Hot stamping of a B-pillar outer from high strength aluminum sheet AA7075. SAE Int J Mater Manuf. 2014;7(3):567.

    Article  Google Scholar 

  21. Gao EZ, Li HW, Kou HC, Chang H, Li JS, Zhou L. Finite element simulation on the deep drawing of titanium thin-walled surface part. Rare Met. 2010;29(1):108.

    Article  Google Scholar 

  22. Li ZJ, Winther G, Hansen N. Anisotropy of plastic deformation in rolled aluminum. Mat Sci Eng A. 2004;387:199.

    Article  Google Scholar 

  23. Qin Y, Liu X, Ji K, Fakir OE, Liu J, Zhang Q, Wang L, Dean TA, Lin J, Yuan SJ, Vollertsen F. Determination of the interfacial heat transfer coefficient in the hot stamping of AA7075. MATEC Web Conf. 2015;21(5):3.

    Google Scholar 

  24. Zhou J, Wang BY, Lin JG, Fu L. Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm. Arch Civ Mech Eng. 2013;13(3):401.

    Article  Google Scholar 

  25. Ma W, Wang B, Fu L, Zhou J, Huang M. Effect of friction coefficient in deep drawing of AA6111 sheet at elevated temperatures. T Nonferr Metal Soc. 2015;25(7):2342.

    Article  Google Scholar 

  26. Cui J, Sun G, Xu J, Huang X, Li G. A method to evaluate the formability of high-strength steel in hot stamping. Mater Design. 2015;77:95.

    Article  Google Scholar 

  27. Wang H, Luo Y, Friedman P, Chen MH, Gao L. Warm forming behavior of high strength aluminum alloy AA7075. T Nonferr Metal Soc. 2012;22(1):1.

    Article  Google Scholar 

  28. Yang ZR, Sun Y, Li XX, Wang SQ. Dry sliding wear performance of 7075 Al alloy under different temperatures and load conditions. Rare Met. 2015;. doi:10.1007/s12598-015-0504-7.

    Google Scholar 

  29. Yang W, Guo Z, Cao H, Luo J, Ye A. Fabrication and mechanical properties of high-performance aluminum alloy. Rare Met. 2014;33(4):400.

    Article  Google Scholar 

  30. Tang XF, Wang BY, Zhang N, Huo YM, Zhou J. Modeling of microstructural evolution and flow behavior of superalloy IN718 using physically based internal state variables. Rare Met. 2015;. doi:10.1007/s12598-015-0602-6.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. U1564202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, WC., Wang, BY., Kang, Y. et al. Deep drawing of aluminum alloy 7075 using hot stamping. Rare Met. 36, 485–493 (2017). https://doi.org/10.1007/s12598-017-0919-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0919-4

Keywords

Navigation