Skip to main content
Log in

In-situ Determination of Trace Element and REE Partitioning in a Natural Apatite-Carbonatite Melt System using Synchrotron XRF Microprobe Analysis

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Inclusions of calcite within large euhedral apatite crystals from the pyroxenite-carbonatite-syenite complex of Sevattur, Tamil Nadu, south India, were identified to represent inclusions of a primary carbonatitic melt (calcite I) from which the apatites have crystallized. The apatites themselves are embedded into a younger batch of calcite-carbonatitic melt (calcite II).

Using the synchrotron XRF microprobe at beamline L at HASYLAB/DESY (Hamburg), the concentrations of the trace elements Ba, Sr, Y, Zr, Th, La, Ce, Nd, Sm, Gd, Dy, and Er were determined both in melt inclusions as well as in host apatites and younger carbonatite matrix. Unexpected high REE concentrations were found not only in apatite but also in calcite, especially of the younger matrix phase, in agreement with the whole rock geochemistry. The data reveal an equilibrium distribution between melt inclusions and host apatite that allows the calculation of partition coefficients D = CiAp/CiCc=melt for elements of interest.

Assuming 9% crystallization of the melt, which can be calculated from the whole rock analyses, the composition of the primary carbonatite melt prior to apatite crystallization can be determined. This composition is, with the exception of only few elements, nearly equal to that of the younger matrix carbonatite melt (calcite II), and thus gives evidence for the existence of different pulses of carbonatite melt during crystallization and consolidation of the carbonatite body.

The results allow new insights into the processes of trace element and REE distribution between the two major igneous components of carbonatites and thus into the question of carbonatitic fractionation processes. The data reveal that mere apatite crystallization and fractionation does not lead to enriched REE compositions during carbonatite evolution but lowers their concentrations in the residual melts. But alternatively, if segregated apatite is collected and incorporated by a new melt batch, the overall REE of this melt will be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, T. (1988) Evolution of peralkaline calcite carbonatite magma in the Fen complex, southeast Norway. Lithos, v.22, ppp.99–112.

    Article  Google Scholar 

  • Basto, M.J. (1995) Gold assessment in micas by XRF using synchrotron radiation. Chem. Geol., v.124, pp.83–90.

    Article  Google Scholar 

  • Bessette, D.R. (1999) Analyse und Quantifizierung geologischer Proben mit der Synchrotron-Röntgenfluoreszenz. Ph.D. thesis, Hamburg University.

    Google Scholar 

  • Biswal, T.K., Waele, B.D. and Ahuja, H. (2007) Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara craton, India: A structural and zircon U-Pb SHRIMP study of the fold-thrust belt and associated nepheline syenite plutons. Tectonics, v.26, pp.1–21.

    Article  Google Scholar 

  • Bizzarro, M., Simonetti, A., Stevenson, R.K. and Kurszlaukis, S., (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser ablation MC-ICP-MS. Geochim. Cosmochim. Acta, v.67, pp.289–302.

    Article  Google Scholar 

  • Borodin, L.S., Gopal, V., Moralev, V.M. and Subramanian, V., (1971) Precambrian carbonatites of Tamil Nadu, South India. Jour. Geol. Soc. India, v.12, pp.101–112.

    Google Scholar 

  • Brigatti, M.F., Malferrari, D., Medici, L., Ottolini, L. and Poppi, L. (2004) Crystal chemistry of apatites from the Tapira carbonatite complex, Brazil. Eur. Jour. Mineral., v.16, pp.677–685.

    Article  Google Scholar 

  • Chen, W. and Simonetti, A. (2013) In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history. Chem. Geol., v.353, pp.151–172

    Article  Google Scholar 

  • Chetty, T.R.K. (2001) The Eastern Ghats Mobile Belt, India: A collage of juxtaposed terranes (?). Gondwana Res., v.4, pp.319–328.

    Article  Google Scholar 

  • Czygan, W. and Goldenberg, G. (1989) Petrography and Geochemistry of the Alkaline Complexes of Sivamalai, Elchuru and Uppalapadu, India. Mem. Geol. Soc. India, v.15, pp.225–240.

    Google Scholar 

  • Dawson, J.B. and Hinton, R.W. (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral. Mag., v.67, pp.921–930.

    Article  Google Scholar 

  • Grady, J.C. (1971) Deep main faults in South India. Jour. Geol. Soc. India, v.12, pp.56–62.

    Google Scholar 

  • Guzmics, T., Kodolanyi, J., Kovacs, I., Szabo, C., Bali, E. and Ntaflos, T. (2008) Primary carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes (Hungary). Mineral. Petrol., v.94, pp.225–242.

    Article  Google Scholar 

  • Guzmics, T., Mitchell, R.H., Szabo, C., Berkesi, M., Milke, R. and Abart, R. (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib. Mineral. Petrol., v.161, pp.177–196.

    Article  Google Scholar 

  • Hansteen, T.H., Sachs, P.M. and Lechtenberg, F. (2000) Synchrotron-XRF microprobe analysis of silicate reference standards using fundamentalparameter quantification. Europ. Jour. Min., v.12, pp.25–32.

    Article  Google Scholar 

  • Hofmann, A. W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.

    Article  Google Scholar 

  • Hornig-Kjarsgaard, I. (1998) Rare earth elements in sövitic carbonatites and their mineral phases. Jour. Petrol., v.39, pp.2105–2121.

    Article  Google Scholar 

  • Jochum, K.P., Dingwell, D.B., Rocholl, A., Stoll, B., Hofmann, A.W., Becker, S., Besmehn, A., Besesette, D., Dietze, H.-J., Dulski, P., Erzinger, J., Hellebrand, E., Hoppe, P., Horn, I., Janssens, K., Jenner, G., Klein, M., McDonough, W.M., Maetz, M., Mezger, K., Müker, C., Nikogosian, I.K., Pickhart, C., Raczek, I., Rhede, D., Seufert, H.M., Simakin, S.G., Sobolev, A.V., Spettel, B., Straub, S., Vincze, L., Wallianos, A., Weckwerth, G., Weyer, S., Wolf, D. and Zimmer, M., (2000) The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for In-Situ Microanalysis. Geostandards Newsletter, v.24, pp.87–133.

    Article  Google Scholar 

  • Keller, J. and Krafft, M. (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull. Volcanol., v.52, pp.629–645.

    Article  Google Scholar 

  • Keller, J. and Hoefs, J. (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell, K. and Keller, J. (Eds.), Carbonatite Volcanism: Oldoinyo Lengai and petrogenesis of natrocarbonatites. IAVCEI Proc. Volcanology, v.4, pp.113–123.

    Article  Google Scholar 

  • Klemme, S. and Dalpé, C. (2003) Trace-element partitioning between apatite and carbonatite melt. Amer. Mineral., v.88, pp.639–646.

    Article  Google Scholar 

  • Krishnamurthy, P. (1977) On some geochemical aspects of Sevattur carbonatite complex, North Arcot district, Tamil Nadu. Jour. Geol. Soc. India, v.18, pp.265–274.

    Google Scholar 

  • Misra, S., Mohanta, A.K., Diwan, P. and Vishwakarma, N. (2015) Zonation of the Eastern Ghats Mobile Belt: A review. Internat. Jour. Geol. and Earth Sci., v.1, pp.46–54.

    Google Scholar 

  • Möller, A., Schleicher, H. and Todt, W. (2000) Wechselbeziehungen innerhalb südindischer Karbonatit-Pyroxenit-Syenit-Komplexe: Verhalten von Spurenelementen. Bh. Europ. Jour. Mineral., v.12, pp.130.

    Google Scholar 

  • Miyazaki, T., Kagami, H., Shuto, K., Morikiyo, T., Ram Mohan, V. and Rajasekaran, K.C. (2000) Rb-Sr-geochronology, Nd-Sr-isotopes and whole rock geochemistry of Yelagiri and Sevattur syenites, Tamil Nadu, South India. Gondwana Res., v.3, pp.39–53.

    Article  Google Scholar 

  • Ratnakar, J. and Leelanandam, C. (1989) Petrology of the alkaline plutons from the eastern and southern Peninsular India. Mem. Geol. Soc. India, no.15, pp.145–176.

    Google Scholar 

  • Rickers, K., Mezger, K. and Raith, M.M. (2001) Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, and new constraints for Rodinia reconstruction: implications from Sm-Nd, Rb-Sr and Pb-Pb isotopes. Precambrian Res., v.11, pp.183–212.

    Article  Google Scholar 

  • Roeder, P.L. (1985) Electron-microprobe analysis of minerals for Rare-Earth-Elements: Use of calculated peak-overlap corrections. Canad. Mineral., v.23, pp.263–271.

    Google Scholar 

  • Schleicher, H., Todt, W., Viladkar, S.G. and Schmidt, F. (1997) Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: evidence for multi-stage histories. Chem. Geol., v.140, pp.261–273.

    Article  Google Scholar 

  • Schleicher, H., Kramm, U., Pernicka, E., Schidlowski, M., Schmidt, F., Subramanian, V., Todt, W. and Viladkar, S.G. (1998) Enriched subcontinental upper mantle beneath southern India: Evidence from Pb, Nd, Sr, and C-O isotopic studies on Tamil Nadu carbonatites. Jour. Petrol., v.39, pp.1765–1785.

    Article  Google Scholar 

  • Shaw, D.M. (1970) Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, v.34, pp.237–243.

    Article  Google Scholar 

  • Song, W., Xu, C., Veksler, I.V. and Kynicky, J. (2016) Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implication for rare metal mineralization. Contrib. Mineral. Petrol., v.171, pp.1–12

    Article  Google Scholar 

  • Subba Rao, T.V., Bhaskar Rao, Y.J., Sivaraman, T.V. and Gopalan, K. (1989) Rb-Sr age and petrology of the Elchuru alkaline complex: Implication to the alkaline magmatism in the Eastern Ghat mobile belt. Mem. Geol. Soc. India, no.15, pp.207–223.

    Google Scholar 

  • Subramanian, V. (1983) Geology and geochemistry of the carbonatites of Tamil Nadu, India. Ph.D. thesis, Indian Institute of Science, Bangalore.

    Google Scholar 

  • Subramanian, V., Viladkar, S.G. and Upendran, R. (1978) Carbonatite alkalic complex of Samalpatti, Dharampuri district, Tamil Nadu. Jour. Geol. Soc. India, v.19, pp.206–216.

    Google Scholar 

  • Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (Eds), Magmatism in the Oceanic Basins. Geol. Soc. Spec. Publ., v.42, pp.313–345.

    Article  Google Scholar 

  • Tarkian, M. and Stribrny, B. (1999) Platinum-group elements in porphyry copper deposits: a reconnaissance study. Mineral. Petrol., v.65, pp.161–183.

    Article  Google Scholar 

  • Udas, G.R. and Krishnamurthy, P. (1970) Carbonatites of Sevatthur and Jogipatti, Madras State, India. Proc. Indian National Science Academy, v.36, pp.331–343.

    Google Scholar 

  • Unnikrishnan-Warrier, C., Santosh, M. and Yoshida, M. (1995) First report of Pan-African Sm-Nd and Rb-Sr mineral isochron ages from regional charnockites of southern India. Geol. Magz., v.132, pp.253–260.

    Article  Google Scholar 

  • Upadhyay, D. and Raith, M.M. (2006) Intrusion age, geochemistry and metamorphic conditions of a quartz-monzonite intrusion at the craton-Eastern Ghats Belt contact near Jojuru, India. Gondwana Res., v.10, pp.267–276.

    Article  Google Scholar 

  • Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschimdt, K., (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos, v.86, pp.447–477.

    Article  Google Scholar 

  • Viladkar, S.G. and Subramanian, V. (1995) Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complexes, Tamil Nadu. Jour. Geol. Soc. India, v.45, pp.505–517.

    Google Scholar 

  • Vincze, L. (1995) Monte Carlo simulation of conventional and synchrotron X-ray fluorescence spectrometers. Ph.D. thesis, Antwerpen University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Schleicher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleicher, H. In-situ Determination of Trace Element and REE Partitioning in a Natural Apatite-Carbonatite Melt System using Synchrotron XRF Microprobe Analysis. J Geol Soc India 93, 305–312 (2019). https://doi.org/10.1007/s12594-019-1178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1178-9

Navigation