Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 3, pp 305–312 | Cite as

In-situ Determination of Trace Element and REE Partitioning in a Natural Apatite-Carbonatite Melt System using Synchrotron XRF Microprobe Analysis

  • Helmut SchleicherEmail author
Research Articles
  • 12 Downloads

Abstract

Inclusions of calcite within large euhedral apatite crystals from the pyroxenite-carbonatite-syenite complex of Sevattur, Tamil Nadu, south India, were identified to represent inclusions of a primary carbonatitic melt (calcite I) from which the apatites have crystallized. The apatites themselves are embedded into a younger batch of calcite-carbonatitic melt (calcite II).

Using the synchrotron XRF microprobe at beamline L at HASYLAB/DESY (Hamburg), the concentrations of the trace elements Ba, Sr, Y, Zr, Th, La, Ce, Nd, Sm, Gd, Dy, and Er were determined both in melt inclusions as well as in host apatites and younger carbonatite matrix. Unexpected high REE concentrations were found not only in apatite but also in calcite, especially of the younger matrix phase, in agreement with the whole rock geochemistry. The data reveal an equilibrium distribution between melt inclusions and host apatite that allows the calculation of partition coefficients D = CiAp/CiCc=melt for elements of interest.

Assuming 9% crystallization of the melt, which can be calculated from the whole rock analyses, the composition of the primary carbonatite melt prior to apatite crystallization can be determined. This composition is, with the exception of only few elements, nearly equal to that of the younger matrix carbonatite melt (calcite II), and thus gives evidence for the existence of different pulses of carbonatite melt during crystallization and consolidation of the carbonatite body.

The results allow new insights into the processes of trace element and REE distribution between the two major igneous components of carbonatites and thus into the question of carbonatitic fractionation processes. The data reveal that mere apatite crystallization and fractionation does not lead to enriched REE compositions during carbonatite evolution but lowers their concentrations in the residual melts. But alternatively, if segregated apatite is collected and incorporated by a new melt batch, the overall REE of this melt will be increased.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, T. (1988) Evolution of peralkaline calcite carbonatite magma in the Fen complex, southeast Norway. Lithos, v.22, ppp.99–112.CrossRefGoogle Scholar
  2. Basto, M.J. (1995) Gold assessment in micas by XRF using synchrotron radiation. Chem. Geol., v.124, pp.83–90.CrossRefGoogle Scholar
  3. Bessette, D.R. (1999) Analyse und Quantifizierung geologischer Proben mit der Synchrotron-Röntgenfluoreszenz. Ph.D. thesis, Hamburg University.Google Scholar
  4. Biswal, T.K., Waele, B.D. and Ahuja, H. (2007) Timing and dynamics of the juxtaposition of the Eastern Ghats Mobile Belt against the Bhandara craton, India: A structural and zircon U-Pb SHRIMP study of the fold-thrust belt and associated nepheline syenite plutons. Tectonics, v.26, pp.1–21.CrossRefGoogle Scholar
  5. Bizzarro, M., Simonetti, A., Stevenson, R.K. and Kurszlaukis, S., (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser ablation MC-ICP-MS. Geochim. Cosmochim. Acta, v.67, pp.289–302.CrossRefGoogle Scholar
  6. Borodin, L.S., Gopal, V., Moralev, V.M. and Subramanian, V., (1971) Precambrian carbonatites of Tamil Nadu, South India. Jour. Geol. Soc. India, v.12, pp.101–112.Google Scholar
  7. Brigatti, M.F., Malferrari, D., Medici, L., Ottolini, L. and Poppi, L. (2004) Crystal chemistry of apatites from the Tapira carbonatite complex, Brazil. Eur. Jour. Mineral., v.16, pp.677–685.CrossRefGoogle Scholar
  8. Chen, W. and Simonetti, A. (2013) In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history. Chem. Geol., v.353, pp.151–172CrossRefGoogle Scholar
  9. Chetty, T.R.K. (2001) The Eastern Ghats Mobile Belt, India: A collage of juxtaposed terranes (?). Gondwana Res., v.4, pp.319–328.CrossRefGoogle Scholar
  10. Czygan, W. and Goldenberg, G. (1989) Petrography and Geochemistry of the Alkaline Complexes of Sivamalai, Elchuru and Uppalapadu, India. Mem. Geol. Soc. India, v.15, pp.225–240.Google Scholar
  11. Dawson, J.B. and Hinton, R.W. (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral. Mag., v.67, pp.921–930.CrossRefGoogle Scholar
  12. Grady, J.C. (1971) Deep main faults in South India. Jour. Geol. Soc. India, v.12, pp.56–62.Google Scholar
  13. Guzmics, T., Kodolanyi, J., Kovacs, I., Szabo, C., Bali, E. and Ntaflos, T. (2008) Primary carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes (Hungary). Mineral. Petrol., v.94, pp.225–242.CrossRefGoogle Scholar
  14. Guzmics, T., Mitchell, R.H., Szabo, C., Berkesi, M., Milke, R. and Abart, R. (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib. Mineral. Petrol., v.161, pp.177–196.CrossRefGoogle Scholar
  15. Hansteen, T.H., Sachs, P.M. and Lechtenberg, F. (2000) Synchrotron-XRF microprobe analysis of silicate reference standards using fundamentalparameter quantification. Europ. Jour. Min., v.12, pp.25–32.CrossRefGoogle Scholar
  16. Hofmann, A. W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314.CrossRefGoogle Scholar
  17. Hornig-Kjarsgaard, I. (1998) Rare earth elements in sövitic carbonatites and their mineral phases. Jour. Petrol., v.39, pp.2105–2121.CrossRefGoogle Scholar
  18. Jochum, K.P., Dingwell, D.B., Rocholl, A., Stoll, B., Hofmann, A.W., Becker, S., Besmehn, A., Besesette, D., Dietze, H.-J., Dulski, P., Erzinger, J., Hellebrand, E., Hoppe, P., Horn, I., Janssens, K., Jenner, G., Klein, M., McDonough, W.M., Maetz, M., Mezger, K., Müker, C., Nikogosian, I.K., Pickhart, C., Raczek, I., Rhede, D., Seufert, H.M., Simakin, S.G., Sobolev, A.V., Spettel, B., Straub, S., Vincze, L., Wallianos, A., Weckwerth, G., Weyer, S., Wolf, D. and Zimmer, M., (2000) The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for In-Situ Microanalysis. Geostandards Newsletter, v.24, pp.87–133.CrossRefGoogle Scholar
  19. Keller, J. and Krafft, M. (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull. Volcanol., v.52, pp.629–645.CrossRefGoogle Scholar
  20. Keller, J. and Hoefs, J. (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell, K. and Keller, J. (Eds.), Carbonatite Volcanism: Oldoinyo Lengai and petrogenesis of natrocarbonatites. IAVCEI Proc. Volcanology, v.4, pp.113–123.CrossRefGoogle Scholar
  21. Klemme, S. and Dalpé, C. (2003) Trace-element partitioning between apatite and carbonatite melt. Amer. Mineral., v.88, pp.639–646.CrossRefGoogle Scholar
  22. Krishnamurthy, P. (1977) On some geochemical aspects of Sevattur carbonatite complex, North Arcot district, Tamil Nadu. Jour. Geol. Soc. India, v.18, pp.265–274.Google Scholar
  23. Misra, S., Mohanta, A.K., Diwan, P. and Vishwakarma, N. (2015) Zonation of the Eastern Ghats Mobile Belt: A review. Internat. Jour. Geol. and Earth Sci., v.1, pp.46–54.Google Scholar
  24. Möller, A., Schleicher, H. and Todt, W. (2000) Wechselbeziehungen innerhalb südindischer Karbonatit-Pyroxenit-Syenit-Komplexe: Verhalten von Spurenelementen. Bh. Europ. Jour. Mineral., v.12, pp.130.Google Scholar
  25. Miyazaki, T., Kagami, H., Shuto, K., Morikiyo, T., Ram Mohan, V. and Rajasekaran, K.C. (2000) Rb-Sr-geochronology, Nd-Sr-isotopes and whole rock geochemistry of Yelagiri and Sevattur syenites, Tamil Nadu, South India. Gondwana Res., v.3, pp.39–53.CrossRefGoogle Scholar
  26. Ratnakar, J. and Leelanandam, C. (1989) Petrology of the alkaline plutons from the eastern and southern Peninsular India. Mem. Geol. Soc. India, no.15, pp.145–176.Google Scholar
  27. Rickers, K., Mezger, K. and Raith, M.M. (2001) Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, and new constraints for Rodinia reconstruction: implications from Sm-Nd, Rb-Sr and Pb-Pb isotopes. Precambrian Res., v.11, pp.183–212.CrossRefGoogle Scholar
  28. Roeder, P.L. (1985) Electron-microprobe analysis of minerals for Rare-Earth-Elements: Use of calculated peak-overlap corrections. Canad. Mineral., v.23, pp.263–271.Google Scholar
  29. Schleicher, H., Todt, W., Viladkar, S.G. and Schmidt, F. (1997) Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: evidence for multi-stage histories. Chem. Geol., v.140, pp.261–273.CrossRefGoogle Scholar
  30. Schleicher, H., Kramm, U., Pernicka, E., Schidlowski, M., Schmidt, F., Subramanian, V., Todt, W. and Viladkar, S.G. (1998) Enriched subcontinental upper mantle beneath southern India: Evidence from Pb, Nd, Sr, and C-O isotopic studies on Tamil Nadu carbonatites. Jour. Petrol., v.39, pp.1765–1785.CrossRefGoogle Scholar
  31. Shaw, D.M. (1970) Trace element fractionation during anatexis. Geochim. Cosmochim. Acta, v.34, pp.237–243.CrossRefGoogle Scholar
  32. Song, W., Xu, C., Veksler, I.V. and Kynicky, J. (2016) Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implication for rare metal mineralization. Contrib. Mineral. Petrol., v.171, pp.1–12CrossRefGoogle Scholar
  33. Subba Rao, T.V., Bhaskar Rao, Y.J., Sivaraman, T.V. and Gopalan, K. (1989) Rb-Sr age and petrology of the Elchuru alkaline complex: Implication to the alkaline magmatism in the Eastern Ghat mobile belt. Mem. Geol. Soc. India, no.15, pp.207–223.Google Scholar
  34. Subramanian, V. (1983) Geology and geochemistry of the carbonatites of Tamil Nadu, India. Ph.D. thesis, Indian Institute of Science, Bangalore.Google Scholar
  35. Subramanian, V., Viladkar, S.G. and Upendran, R. (1978) Carbonatite alkalic complex of Samalpatti, Dharampuri district, Tamil Nadu. Jour. Geol. Soc. India, v.19, pp.206–216.Google Scholar
  36. Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (Eds), Magmatism in the Oceanic Basins. Geol. Soc. Spec. Publ., v.42, pp.313–345.CrossRefGoogle Scholar
  37. Tarkian, M. and Stribrny, B. (1999) Platinum-group elements in porphyry copper deposits: a reconnaissance study. Mineral. Petrol., v.65, pp.161–183.CrossRefGoogle Scholar
  38. Udas, G.R. and Krishnamurthy, P. (1970) Carbonatites of Sevatthur and Jogipatti, Madras State, India. Proc. Indian National Science Academy, v.36, pp.331–343.Google Scholar
  39. Unnikrishnan-Warrier, C., Santosh, M. and Yoshida, M. (1995) First report of Pan-African Sm-Nd and Rb-Sr mineral isochron ages from regional charnockites of southern India. Geol. Magz., v.132, pp.253–260.CrossRefGoogle Scholar
  40. Upadhyay, D. and Raith, M.M. (2006) Intrusion age, geochemistry and metamorphic conditions of a quartz-monzonite intrusion at the craton-Eastern Ghats Belt contact near Jojuru, India. Gondwana Res., v.10, pp.267–276.CrossRefGoogle Scholar
  41. Upadhyay, D., Raith, M.M., Mezger, K. and Hammerschimdt, K., (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos, v.86, pp.447–477.CrossRefGoogle Scholar
  42. Viladkar, S.G. and Subramanian, V. (1995) Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complexes, Tamil Nadu. Jour. Geol. Soc. India, v.45, pp.505–517.Google Scholar
  43. Vincze, L. (1995) Monte Carlo simulation of conventional and synchrotron X-ray fluorescence spectrometers. Ph.D. thesis, Antwerpen University.Google Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Mineralogisch-Petrographisches Institut UniversitätHamburgGermany

Personalised recommendations