Skip to main content
Log in

Genome-Wide Pathway Analysis of Microarray Data Identifies Risk Pathways Related to Salt Stress in Arabidopsis Thaliana

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Salt stress is a common abiotic stress in agricultural production, which is affected by multiple genes and environmental factors. Although transcriptome analyses have detected some salt-related genes in Arabidopsis thaliana, these genes are often major genes and can not adequately explain the molecular mechanism of salt tolerance. Some genes related to salt stress, but does not reach significant threshold in gene expression analysis (called modest effect genes), are often ignored. Therefore, we took full account of the role of modest effect genes and performed a pathway-based analysis of three gene microarray datasets to identify the pathways related to salt stress. We also compared these results with the pathways identified by major genes. Finally, three pathways were identified as salt-related pathways, some of which were previously reported to be related to salt stress in plants, while others are novel. These findings will help us to study the molecular mechanism of salt stress, but also provide a new perspective for the study of salt tolerance in Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. http://www.ncbi.nlm.nih.gov/geo/.

  2. ftp://ftp.ncbi.nlm.nih.gov/genomes/MapView/Arabidopsis_thaliana/sequence/BUILD.9.2/initial_release/.

References

  1. Liu Y, Ji X, Zheng L, Nie X, Wang Y (2013) Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int J Mol Sci 14:9979–9998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kawaura K, Mochida K, Ogihara Y (2008) Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct Integr Genom 8:277–286

    Article  CAS  Google Scholar 

  3. Wang J, Chen L, Wang Y, Zhang J, Liang Y et al (2013) A computational systems biology study for understanding salt tolerance mechanism in rice. PLoS One 8:e64929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M et al (2009) STIFDB-Arabidopsis stress responsive transcription factor database. Int J Plant Genom 2009:583429

    CAS  Google Scholar 

  5. Borkotoky S, Saravanan V, Jaiswal A, Das B, Selvaraj S et al (2013) The Arabidopsis stress responsive gene database. Int J Plant Genom 2013:949564

    Google Scholar 

  6. Naika M, Shameer K, Sowdhamini R (2013) Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics. Mol Biosyst 9:1888–1908

    Article  PubMed  CAS  Google Scholar 

  7. Lai L, Liberzon A, Hennessey J, Jiang G, Qi J et al (2012) AraPath: a knowledgebase for pathway analysis in Arabidopsis. Bioinformatics 28:2291–2292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yi X, Du Z, Su Z (2013) PlantGSEA: a gene set enrichment analysis toolkit for plant community. Nucleic Acids Res 41:W98-103

    PubMed  Google Scholar 

  9. Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J et al (2015) Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell 27:2244–2260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Allu AD, Soja AM, Wu A, Szymanski J, Balazadeh S (2014) Salt stress and senescence: identification of cross-talk regulatory components. J Exp Bot 65:3993–4008

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guan Q, Wu J, Yue X, Zhang Y, Zhu J (2013) A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis. PLoS Genet 9:e1003755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wixon J, Kell D (2000) The Kyoto encyclopedia of genes and genomes–KEGG. Yeast 17:48–55

    Article  PubMed  CAS  Google Scholar 

  14. Ramanan VK, Shen L, Moore JH, Saykin AJ (2012) Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet 28:323–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Peng G, Luo L, Siu H, Zhu Y, Hu P et al (2010) Gene and pathway-based second-wave analysis of genome-wide association studies. Eur J Hum Genet 18:111–117

    Article  PubMed  Google Scholar 

  16. Jia P, Zheng S, Long J, Zheng W, Zhao Z (2011) dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics 27:95–102

    Article  PubMed  CAS  Google Scholar 

  17. Liu G, Zhang F, Jiang Y, Hu Y, Gong Z et al (2017) Integrating genome-wide association studies and gene expression data highlights dysregulated multiple sclerosis risk pathways. Mult Scler 23:205–212

    Article  PubMed  CAS  Google Scholar 

  18. Roy K, Chanfreau G (2014) Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival. PLoS Genet 10:e1004661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Deng Y, Srivastava R, Howell SH (2013) Endoplasmic reticulum (ER) stress response and its physiological roles in plants. Int J Mol Sci 14:8188–8212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu J, Qiao Q, Cheng X, Du G, Deng G et al (2016) Transcriptome differences between fiber-type and seed-type Cannabis sativa variety exposed to salinity. Physiol Mol Biol Plants 22:429–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant from the National Natural Science Foundation of China (Grant No. 81601422).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingming Zhang or Imshik Lee.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Mu, H., Zhang, R. et al. Genome-Wide Pathway Analysis of Microarray Data Identifies Risk Pathways Related to Salt Stress in Arabidopsis Thaliana. Interdiscip Sci Comput Life Sci 10, 566–571 (2018). https://doi.org/10.1007/s12539-018-0288-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-018-0288-1

Keywords

Navigation