Marine Biodiversity

, Volume 49, Issue 2, pp 809–814 | Cite as

Acropora tenella, a zooxanthellate coral extending to 110-m depth in the northern Coral Sea

  • P. R. MuirEmail author
  • M. Pichon
  • L. SquireJr
  • C. C. Wallace
Original Paper


The zooxanthellate scleractinian genus Acropora (Acroporidae) dominates many shallow-reef areas across the Indo-Pacific, but has recently been recognised as a component of deep-reef assemblages with only a few records below 60 m depth. Here, we report on Acropora tenella (Brook, 1892) growing to 110-m depth in the western Coral Sea, equal to the record for the genus and close to the maximum reported for zooxanthellate corals in Eastern Australia. The species was detected at several sites in the northern Great Barrier Reef and western Coral Sea, generally occurring as large colonies but at a low level of abundance and only below 40-m depth. We review museum holdings and other recent literature, finding the species has a much wider bathymetric and geographical distribution than previously documented. Acropora tenella is currently listed as vulnerable to extinction on the basis of a limited distribution and global population size, but we suggest that this status and that of other deep-water zooxanthellate corals may require revision in light of new data from the mesophotic zone.


Mesophotic Biogeography Scleractinia Acroporidae Depth distribution 



We thank Pim Bongaerts for the comments and assistance, David Whilas for piloting the ROVs and Kyra Hay and Norbert Englebert for the assistance with collecting. We are grateful to the three anonymous reviewers and the editor for their excellent comments and suggestions.

Funding information

Much of the fieldwork and equipment was funded by the XLCatlin Seaview Survey. Sampling permits: GBRMPA G12/35281.1, G14/37294.1, AU-COM2012-151, AU-COM2013-226, AU-COM2016-308

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed by the authors.


  1. Aeby G, Lovell ER, Richards ZT, Delbeek JT, Reboton C, Bass D (2014) Acropora tenella. The IUCN Red List of Threatened Species 2014: e.T133203A54212697. Downloaded on 25 January 2018
  2. Brook G (1893) The genus Madrepora. Catalogue of the Madreporarian corals in the British Museum (Natural History) 1:1–212Google Scholar
  3. Cairns S, Hoeksema B (2018) World List of Scleractinia. Accessed through: World Register of Marine Species at on 19 January 2018
  4. Campbell JW, Aarup T (1989) Photosynthetically available radiation at high latitudes. Limnol Oceanogr 34:1490–1499CrossRefGoogle Scholar
  5. Cramer KL, O’Dea A, Clark TR, Zhao J, Norris RD (2017) Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nat Comm 8:14160CrossRefGoogle Scholar
  6. DeVantier L, Turak E (2017) Species richness and relative abundance of reef-building corals in the Indo-West Pacific. Diversity 9:25. CrossRefGoogle Scholar
  7. Englebert N, Bongaerts P, Muir PR, Hay K, Hoegh-Guldberg O (2015) Deepest zooxanthellate corals of the Great Barrier Reef and Coral Sea. Mar Biodivers 45:1–2CrossRefGoogle Scholar
  8. Eyal G, Wiedenmann J, Grinblat M, D’Angelo C, Kramarsky-Winter E, Treibitz T, Or B-Z et al (2015) Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS One 10:e0128697CrossRefGoogle Scholar
  9. Harris PT, Bridge TCL, Beaman RJ, Webster JD, Nichol SL, Brooke BP (2013) Submerged banks in the Great Barrier Reef, Australia, greatly increase available coral reef habitat. ICES J Mar Sci 70:284–293CrossRefGoogle Scholar
  10. Kahng SE, Maragos JE (2006) The deepest zooxanthellate scleractinian corals in the world? Coral Reefs 25:254CrossRefGoogle Scholar
  11. Lee Z, Du K, Arnone R, Liew S, Penta B (2005) Penetration of solar radiation in the upper ocean: a numerical model for oceanic and coastal waters. J Geophys Res 110:C09019Google Scholar
  12. Linklater M, Caroll AG, Hamylton SM, Jordan AR, Brooke BP, Nichol SL, Woodroffe BP (2016) High coral cover on a mesophotic, subtropical island platform at the limits of coral reef growth. Cont Shelf Res 130:34–46CrossRefGoogle Scholar
  13. Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9CrossRefGoogle Scholar
  14. Madin JS, Allen AP, Baird AH, Pandolfi JM, Sommer B (2016) Scope for latitudinal extension of reef corals is species specific. Front Biogeogr 8:e29328CrossRefGoogle Scholar
  15. Maragos JE, Jokiel PL (1986) Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs 4:141–150CrossRefGoogle Scholar
  16. Muir PR, Wallace CC (2016) A rare ‘deep-water’ coral assemblage in a shallow lagoon in Micronesia. Mar Biodivers 46:543–544CrossRefGoogle Scholar
  17. Muir PR, Wallace CC, Bridge TCL, Bongaerts P (2015a) Diverse staghorn coral fauna on the mesophotic reefs of North-East Australia. PLoS One 10:e0117933CrossRefGoogle Scholar
  18. Muir PR, Wallace CC, Done T, Aguirre JD (2015b) Limited scope for latitudinal extension of reef corals. Science 348:1135–1138CrossRefGoogle Scholar
  19. Muir PR, Wallace CC, Done T, Aguirre JD (2016) Response to letter regarding ‘limited scope for latitudinal extension of reef corals. Front Biogeogr 8:e32349CrossRefGoogle Scholar
  20. Ohara T, Fujii T, Kawamura I, Mizuyama M, Montenegro J, Shikiba H, White KN, Reimer JD (2013) First record of a mesophotic Pachyseris foliosa reef from Japan. Mar Biodivers 43:71–72CrossRefGoogle Scholar
  21. Prasetia R, Sinniger F, Harii S (2015) Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35:53–62CrossRefGoogle Scholar
  22. Reed JK (1985) Deepest distribution of Atlantic hermatypic coral discovered in the Bahamas. Proc 5th Int. Coral Reef Congr 6:249–254Google Scholar
  23. Richards ZT, van Oppen MJH, Wallace CC, Willis BL, Miller DJ (2008) Some rare Indo-Pacific coral species are probable hybrids. PLoS One 3:e3240CrossRefGoogle Scholar
  24. Richards ZT, Syms C, Wallace CC, Muir PR, Willis BL (2013) Multiple occupancy abundance patterns in staghorn coral communities. Divers Distr 19:884–895CrossRefGoogle Scholar
  25. Santodomingo N, Wallace CC, Johnson KG (2015a) Fossils reveal a high diversity of the staghorn coral genera Acropora and Isopora (Scleractinia: Acroporidae) in the Neogene of Indonesia. Zool J Linnean Soc 175:677–763CrossRefGoogle Scholar
  26. Santodomingo N, Novak V, Pretković V, Marshall N, Di Martino E, Capelli ELG, Rösler A, Reich S, Braga JC, Renema W, Johnson KG (2015b) A diverse patch reef from turbid habitats in the Middle Miocene (East Kalimantan, Indonesia). PALAIOS 30:28–149CrossRefGoogle Scholar
  27. Sinniger F, Morita M, Harii S (2013) “Locally extinct” coral species Seriatopora hystrix found at upper mesophotic depths in Okinawa. Coral Reefs 32:153CrossRefGoogle Scholar
  28. Veron JEN (2014) Results of an update of the corals of the world information base for the listing determination of 66 coral species under the endangered species act. Western Pacific Regional Fishery Management Council, HonoluluGoogle Scholar
  29. Veron JEN, Wallace CC (1984) Scleractinia of Eastern Australia Part V, Family Acroporidae. Austr. Inst Mar Sci Monogr Ser 6:1–485Google Scholar
  30. Wallace CC (1994) New species and a new species-group of the coral genus Acropora (Scleractinia: Astrocoeniina: Acroporidae) from Indo-Pacific locations. Invertebr Taxon 8:961–988CrossRefGoogle Scholar
  31. Wallace CC (1999) Staghorn corals of the world. CSIRO publishing, MelbourneCrossRefGoogle Scholar
  32. Wallace CC, Done BJ, Muir PR (2012) Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland. Mem Qld Mus Nat 57:1–255Google Scholar
  33. Welch H, Pressey RL, Heron SF, Ceccarelli DM, Hob AJ (2015) Regimes of chlorophyll-a in the Coral Sea: implications for evaluating adequacy of marine protected areas. Ecography 39:289–304CrossRefGoogle Scholar
  34. Wells JW (1954) Recent corals of the Marshall Islands. Prof Pap US Geol Surv 260:385–486Google Scholar
  35. Wells JW (1985) Notes on Indo-Pacific scleractinian corals II. A new species of Acropora from Australia. Pac Sci 39:338–339Google Scholar
  36. White KN, Weinstein DK, Ohara T, Denis V, Montenegro J, Reimer JD (2017) Shifting communities after typhoon damage on an upper mesophotic reef in Okinawa, Japan. Peer J 5:e3573CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. R. Muir
    • 1
    • 2
    Email author
  • M. Pichon
    • 1
  • L. SquireJr
    • 3
  • C. C. Wallace
    • 1
  1. 1.Biodiversity SectionQueensland MuseumTownsvilleAustralia
  2. 2.Global Change InstituteUniversity of QueenslandSt. LuciaAustralia
  3. 3.Cairns MarineCairnsAustralia

Personalised recommendations