Phylogeography of einkorn landraces in the Mediterranean basin and Central Europe: population structure and cultivation history

  • Hugo R. Oliveira
  • Huw Jones
  • Fiona Leigh
  • Diane L. Lister
  • Martin K. Jones
  • Leonor Peña-Chocarro
Original Paper

Abstract

Einkorn (Triticum monococcum L.) was one of the first cereals to be domesticated in the Old World ca. 10,000 years ago and to spread towards Europe and North Africa. Its cultivation declined before the Iron Age and it remains today only as a relic crop in remote areas. To investigate if the geographic distribution of genetic diversity in modern einkorn landrace accessions could be informative about the movement of this crop during prehistory, we genotyped 50 accessions of einkorn from Europe, North Africa and the Near East. Using nuclear and chloroplast microsatellites and clustering methods, we detected two main gene pools in einkorn. The distribution of these lineages revealed differences between accessions from Morocco and the Iberian Peninsula from the rest of Europe and the Near East and suggests different regional dynamics in the spread of this crop.

Keywords

Einkorn Phylogeography Microsatellites Mediterranean Agricultural history 

Supplementary material

12520_2011_76_MOESM1_ESM.pdf (16 kb)
ESM 1(PDF 16 kb)
12520_2011_76_MOESM2_ESM.pdf (392 kb)
ESM 2(PDF 392 kb)

References

  1. Alonso N (2008) Crops and agriculture during the Iron Age and late antiquity in Cerdanyola del Valle’s (Catalonia, Spain). Veg Hist Archaeob 17:75–84CrossRefGoogle Scholar
  2. Antolín F, Buxó R (2010) Durum wheat in the early Neolithic of the Iberian Peninsula: evaluating the evidence from La Draga (Banyoles, Girona Province, Spain). In: Bittmann F (ed) 15th Conference of the International Work Group for Palaeoethnobotany. Verlag/Terra Nostra–Schriften der GeoUnion Alfred-Wegener-Stiftung Wilhelmshaven, GermanyGoogle Scholar
  3. Bai J, Liu K, Jia X, Wang D (2004) An analysis of homoeologous microsatellites from Triticum urartu and Triticum monococcum. Plant Sci 166:341–347CrossRefGoogle Scholar
  4. Ballouche A, Marinval P (2003) Donnes palynologiques et carpologiques sur la domestication des plantes et l’agriculture dans le Neolithique ancien du Maroc septentrional (site de Kaf Taht el-Ghar). Revue d’Archaéometrie 27:49–54Google Scholar
  5. Bellwood P (2005) First farmers. Wiley-Blackwell, OxfordGoogle Scholar
  6. Bogaard A (2004) Neolithic farming in central Europe: an archaeobotanical study of crop husbandry practices. Routledge, LondonGoogle Scholar
  7. Brandolini A, Vaccino P, Boggini G, Ozkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49:297–305CrossRefGoogle Scholar
  8. Brown TA, Lindsay S, Allaby R (2006) Using modern landraces of wheat to study the origins of European agriculture. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. Columbia University Press, New YorkGoogle Scholar
  9. Campana MG, Hunt HV, Jones H, White J (2010) CorrSieve: software for summarizing and evaluating Structure output. Mol Ecol Resour 11:349–352CrossRefGoogle Scholar
  10. Cavalli-Sforza L, Edwards A (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257Google Scholar
  11. Chessel D, Dufour AB, Thiolouse J (2004) The ade4 package—I: one-table methods. R News 4:1–6Google Scholar
  12. Ducellier L (1921) Contribution a l'étude des espèces du genre Triticum cultivés dans le nord del'Afrique. Bulletin Societé Histoire Natural de Afrique du Nord 12(4):66–68Google Scholar
  13. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407CrossRefGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  15. Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578CrossRefGoogle Scholar
  16. Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924CrossRefGoogle Scholar
  17. Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13(3):207–209CrossRefGoogle Scholar
  18. Halstead P (1996) The development of agriculture and pastoralism in Greece: when, how, who and what? In: Harris DR (ed) The origins and spread of agriculture and pastoralism in Eurasia: crops. Fields, Flocks and Herds, RoutledgeGoogle Scholar
  19. Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers—a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47:497–505CrossRefGoogle Scholar
  20. Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn domestication identified by DNA fingerprinting. Science 278:1312–1314CrossRefGoogle Scholar
  21. Heun M, Haldorsen S, Vollan K (2008) Reassessing domestication events in the Near East: einkorn and Triticum urartu. Genome 51(6):444–451CrossRefGoogle Scholar
  22. Hillman G (2000) Plant food economy of Abu Hureyra. In: Moore A, Hillman G, Legge T (eds) Village on the Euphrates, from foraging to farming at Abu Hureyra. Oxford University Press, OxfordGoogle Scholar
  23. Hood G (2002) Poptools 3.2. Available at http://www.cse.csiro.au/poptools
  24. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinforma 8:460CrossRefGoogle Scholar
  25. Isaac AD, Muldoon M, Brown KA, Brown TA (2010) Genetic analysis of wheat landraces enables the location of the first agricultural sites in Italy to be identified. J Archaeol Sci 37:950–956CrossRefGoogle Scholar
  26. Ishii T, Mori N, Ogihara Y (2001) Evaluation of allelic diversity at chloroplast microsatellite loci among common wheat and its ancestral species. Theor Appl Genet 103:896–904CrossRefGoogle Scholar
  27. Jacomet S (2007) Neolithic plant economies in the northern Alpine Foreland from 5500–3500 cal BC. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  28. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefGoogle Scholar
  29. Jones M, Allaby RJ, Brown TA (1998) Wheat domestication. Science 279:303Google Scholar
  30. Jones H, Lister DL, Bower MA, Leigh FJ, Smith LM, Jones MK (2008) Approaches and constraints of using existing landrace and extant plant material to understand agricultural spread in prehistory. Plant Genet Resour 6(2):98–112CrossRefGoogle Scholar
  31. Kilian B, Ozkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24(12):2657–2668CrossRefGoogle Scholar
  32. Kreuz A (2007) Archaeobotanical perspectives on the beginning of agriculture north of the Alps. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  33. Kreuz A, Boenke N (2002) The presence of two-grained einkorn at the time of the Bandkeramik culture. Veg Hist Archaeob 11:233–240CrossRefGoogle Scholar
  34. Kroll H (2007) The plant remains from the Neolithic Funnel Beaker site of Wangels in Holsatia, Northern Germany. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  35. Linstädter J (2008) The Epipalaeolithic–Neolithic-transition in the Mediterranean region of Northwest Africa. Quartär 55:41–62Google Scholar
  36. Lister DL, Bower MA, Jones MK (2010) Herbarium specimens expand the geographical and temporal range of germplasm data in phylogeographic studies Taxon 59: 1321–1323Google Scholar
  37. Liu J, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129CrossRefGoogle Scholar
  38. Londo JP, Chiang Y-C, Hung K-H, Chiang T-Y, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583CrossRefGoogle Scholar
  39. Lund B, Ortiz R, Skovgaard I, Waugh R, Andersen S (2003) Analysis of potential duplicates in barley gene bank collections using re-sampling of microsatellite data. Theor Appl Genet 106(6):1129–1138Google Scholar
  40. Luo M-C, Yang Z-L, You F, Kawahara T, Waines J, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959CrossRefGoogle Scholar
  41. Malone C (2003) The Italian Neolithic: a synthesis of research. J World Prehist 17(3):235–312CrossRefGoogle Scholar
  42. Mantel N (1967) Detection of disease clustering and generalised regression approach. Cancer Res 27:209–220Google Scholar
  43. Marinova E (2007) Archaeobotanical data from the early Neolithic of Bulgaria. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  44. Martinez NA (2005) Agriculture and food from the Roman to the Islamic Period in the North-East of the Iberian Peninsula: archaeobotanical studies in the city of Lleida (Catalonia, Spain). Veg Hist Archaeob 14:341–361CrossRefGoogle Scholar
  45. Miège E (1924a) Sur les divers Triticum cultivés au Maroc. Bulletin de la Société des Sciences Naturelles du Maroc 4(5–6):135–138Google Scholar
  46. Miège E (1924b) Les formes marocaines de Triticum monococcum Linné. Bulletin de la Société des Sciences Naturelles du Maroc 4(7):154–160Google Scholar
  47. Milisauskas S (2001) Linear pottery. In: Peregrine PN, Ember M (eds) Encyclopedia of prehistory vol. 4 Europe. Kluwer Academic, LondonGoogle Scholar
  48. Moragues M, Moralejo M, Sorrels M, Royo C (2007) Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites. Genet Resour Crop Evol 54:1133–1144CrossRefGoogle Scholar
  49. Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C (2009) Mobyle: a new full web bioinformatics framework. Bioinformatics 25:3005–3011CrossRefGoogle Scholar
  50. Nesbitt M (2002) When and where did domesticated cereals first occur in southwest Asia? In: Cappers R, Bottema S (eds) The dawn of farming in the Near East. Ex Oriente, BerlinGoogle Scholar
  51. Nesbitt M, Samuel D (1995) From staple crop to extinction? The archaeology and history of hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Proceedings of the First International Workshop on Hulled Wheats, 21–22 July, Castelvecchio Pascoli, Tuscany, ItalyGoogle Scholar
  52. Oliveira HR (2011) Archaeogenetics and the spread of agriculture in the Iberian Peninsula and Northwest Africa: a study of genetic variation within tetraploid and diploid wheats. Ph.D. dissertation, University of Cambridge, Cambridge, UKGoogle Scholar
  53. Olsen K, Schaal B (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591CrossRefGoogle Scholar
  54. Pelling R (2007) Agriculture and trade amongst the Garamantes: 3000 years of archaeobotanical data from the Sahara and its margins. Ph.D. dissertation, Institute of Archaeology, UCL, London, UKGoogle Scholar
  55. Peña-Chocarro L (1995) In-situ conservation of hulled wheat species: the case of Spain. In: Padulosi S, Hammer K, Heller J (eds) Proceedings of the First International Workshop on Hulled Wheats, 21–22 July, Castelvecchio Pascoli, Tuscany, ItalyGoogle Scholar
  56. Peña-Chocarro L (2007) Early agriculture in central and southern Spain. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  57. Pena-Chocarro L, Zapata Pena L, Gonzalez-Urquijo JE, Estevez JJI (2009) Einkorn (Triticum monococcum L.) cultivation in mountain communities of the western Rif (Morocco): an ethnoarchaeological project. In: Fairbairn AS, Weiss E (eds) From foragers to farmers: papers in honour of Gordon C. Hillman. Oxbow Books, LondonGoogle Scholar
  58. Pozzi C, Salamini F (2007) Genomics of wheat domestication. In: Varshney RK, Tuberosa R (eds) Genomic assisted crop improvement: vol 2: genomics applications in crops., pp 453–481CrossRefGoogle Scholar
  59. Pozzi C, Rossini L, Vecchietti A, Salamini F (2004) Gene and genome changes during domestication. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic, London, pp 165–198Google Scholar
  60. Price DT (ed) (2000) Europe’s first farmers. Cambridge University Press, CambridgeGoogle Scholar
  61. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  62. Provan J, Wolters P, Caldwell KH, Powell W (2004) High-resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190CrossRefGoogle Scholar
  63. Robinson DE (2007) Exploitation of plant resources in the Mesolithic and Neolithic of southern Scandinavia: from gathering to harvesting. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  64. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-HLN, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023Google Scholar
  65. Rossiter S, Benda P, Dietz C, Zhang S, Jones G (2007) Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implication for population history, taxonomy and conservation. Mol Ecol 16:4699–4714CrossRefGoogle Scholar
  66. Rottoli M, Castiglioni E (2009) Prehistory of plant growing and collecting in northern Italy, based on seed remains from the early Neolithic to the Chalcolithic (c. 5600–2100 cal B.C.). Veg Hist Archaeob 18:91–103CrossRefGoogle Scholar
  67. Rottoli M, Pessina A (2007) Neolithic agriculture in Italy: an update of archaeobotanical data with particular emphasis on northern settlements. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  68. Ruiz M, Aguiriano E, Fité R, Carrillo JM (2007) Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. ssp. monococcum). Genet Resour Crop Evol 54:1849–1860CrossRefGoogle Scholar
  69. Saisho D, Purugganan MD (2007) Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics 177:1765–1776CrossRefGoogle Scholar
  70. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  71. Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441Google Scholar
  72. Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234CrossRefGoogle Scholar
  73. Sjörgen P, Wyöni P-I (1994) Conservation genetics and detection of rare alleles in finite population. Conserv Biol 8(1):267–270CrossRefGoogle Scholar
  74. Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352CrossRefGoogle Scholar
  75. Taylor JA (2005) Muslims in Medieval Italy: the colony at Lucera. Lexington Books, OxfordGoogle Scholar
  76. Tereso JP (2009) Plant macrofossils from the Roman settlement of Terronha de Pinhovelo, northwest Iberia. Veg Hist Archaeob 18:489–501CrossRefGoogle Scholar
  77. Thuillet A-C, Bataillon T, Poirier S, Santoni S, David JL (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169:1589–1599CrossRefGoogle Scholar
  78. Valamoti S-M, Kotsakis K (2007) Transitions to agriculture in the Aegean: the archaeobotanical evidence. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, Walnut CreekGoogle Scholar
  79. Willcox G (2004) Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates valley. J Archaeol Sci 31:145–150CrossRefGoogle Scholar
  80. Yahiaoui S, Igartua E, Moralejo M, Ramsay L, Molina-Cano JL, Ciudad FJ, Lasa JM, Garcia MP, Casas AM (2008) Patterns of genetic and eco-geographical diversity in Spanish barley. Theor Appl Genet 116:271–282CrossRefGoogle Scholar
  81. Zapata L, Peña-Chocarro L, Pérez-Jordá G, Stika H-P (2004) Early Neolithic agriculture in the Iberian peninsula. J World Prehist 18:283–325CrossRefGoogle Scholar
  82. Zhang H, Stern H (2009) Inferences for genotyping error rate in ancestry identification from simple sequence repeat marker profiles. J Agric Biol Environ Stat 14(2):170–187CrossRefGoogle Scholar
  83. Zhang LY, Ravel C, Bernard M, Balfourier F, Leroy P, Feuillet C, Sourdille P (2006) Transferable bread wheat EST-SSRs can be useful for phylogenetic studies among the Triticeae species. Theor Appl Genet 113:407–418CrossRefGoogle Scholar
  84. Zohary D, Hopf M (2000) Domestication of plants in the Old World. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hugo R. Oliveira
    • 1
  • Huw Jones
    • 2
  • Fiona Leigh
    • 2
  • Diane L. Lister
    • 1
  • Martin K. Jones
    • 3
  • Leonor Peña-Chocarro
    • 4
  1. 1.McDonald Institute for Archaeological ResearchUniversity of CambridgeCambridgeUK
  2. 2.NIABCambridgeUK
  3. 3.Department of ArchaeologyUniversity of CambridgeCambridgeUK
  4. 4.G.I. Arqueobiología, Centro de Ciencias Humanas y Sociales (CSIC)MadridSpain

Personalised recommendations