Skip to main content
Log in

Structure and genetic diversity in wild and cultivated populations of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: its putative domestication center

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Tropical fruit trees are an important component of the human diet; however, little is known about their genetic diversity levels. Zapote mamey (Pouteria sapota) is a tree native to southeastern Mexico and Central America, and Mexico is the leading producer in the world. Studies of the genetic diversity of Zapote mamey have been based on cultivated materials using morphological and biochemical characterization or dominant molecular markers. To gain a deeper understanding about the conservation status of Zapote mamey in its center of origin and domestication, we collected 188 individuals from eight wild and five cultivated populations in southeastern Mexico and characterized them using eight microsatellite loci. STRUCTURE, 3D-PCoA, and neighbor-joining analyses showed three groups in the wild gene pool and one group in the cultivated gene pool. FST values were significant between wild and cultivated gene pools, among the four groups observed and among the 13 populations collected (0.13, 0.25, and 0.36, respectively). Overall, we found low levels of genetic diversity (A = 2.77, HO = 0.29, HE = 0.39), permutation tests did not show significant differences between wild and cultivated gene pools. The Garza–Williamson index showed low values in both gene pools (wild = 0.16, cultivated = 0.11) and the Bottleneck program indicated a decrease in genetic diversity in both gene pools (wild, P = 0.027; cultivated, P = 0.054); both analyses suggest a potential genetic bottleneck within this species. This study can help to generate adequate sampling techniques and to develop effective management strategies for Zapote mamey of southeastern Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbo S, Phinasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360

    Article  CAS  PubMed  Google Scholar 

  • Arellano-Durán N (2012) Caracterización morfológica, estudio molecular y determinación de azúcares en zapote mamey (Pouteria sapota (Jacq.) H.E. Moore & Stearn). Disertation, Colegio de Postgraduados

  • Arias RS, Martínez-Castillo J, Sobolev VS, Blancarte-Jasso NH, Simpson SA, Ballard LL, Duke MV, Liu XF, Irish BM, Scheffler BE (2015) Development of a large set of microsatellite markers in Zapote mamey (Pouteria sapota (Jacq.) H.E. Moore & Stearn) and their potential use in the study of the species. Molecules 20:11400–11417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awodoyin R, Olubode O, Ogbu J, Balogun R, Nwawuisi J, Orji K (2015) Indigenous fruit trees of tropical Africa: status, opportunity for development and biodiversity management. Agric Sci 6:31–41

    Google Scholar 

  • Azevedo VCR, Kanashiro M, Ciampi AY, Grattapaglia D (2007) Genetic structure and mating system of Manilkara huberi (Ducke) A. Chev., a heavily logged amazonian timber species. J Hered 98:646–654

    Article  CAS  PubMed  Google Scholar 

  • Azurdía C (2006) Tres especies de Zapote en América Tropical (Pouteria campechiana, P. sapota, P. viridis). Universidad de Southampton, Southampton

  • Balerdi CF, Crane JH (2015) El mamey sapote en Florida. Miami: the Institute of Food and Agricultural Sciences-Extension. University of Florida, USA

    Google Scholar 

  • Bañuelos-Jimenez JS, Ochoa I (2006) Caracterización morfológica de zapote mamey (Pouteria sapota Jacq. H.E. Moore & Stearn) del centro occidente de Michoacán, México. Rev Fitotec Mex 29:9–17

    Google Scholar 

  • Bassam BJ, Anollés GC, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Brewer SW, Rejmanek M (1999) Small rodents as significant dispersers of tree sedes in a Neotropicla forest. J Veg Sci 10(2):165–174

    Article  Google Scholar 

  • Bruner BR, Morales-Payan JP (2011) Soils, plant growth and crop production - Sapote, Sapodilla and Star apple. In: Encyclopedia of life support systems. Paris, France: UNESCO. http://www.eolss.net/sample-chapters/c10/e1-05a-53-00.pdf. (Accesed 13 January 2018)

  • Carrara S, Campbell R, Schnell R (2004) Genetic variation among cultivated selections of mamey sapote (Pouteria spp. [Sapotaceae]). P Fl St Hortic Soc 117:195–200

    Google Scholar 

  • De Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47:9281–9290

    Article  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Espinosa-Zaragoza S, Saucedo VC, Villegas MA, Ibarra EME (2005) Caracterización de frutos de zapote mamey (Pouteria sapota (Jacq.) H. E. Moore & Stearn) en Guerrero, México. Proc Interamerican Soc Trop Hortic 48:135–138

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    Article  CAS  Google Scholar 

  • Ganzhorn SM, Thomas WW, Gaiotto FA, Lewis JD (2015) Spatial genetic structure of Manilkara máxima (Sapotaceae), a tree species from the Brazilian Atlantic forest. J Trop Ecol 31:437–447

    Article  Google Scholar 

  • Gaona-García A, Alia-Tejacal I, López-Martínez V, Andrade-Rodríguez M, Colinas-León MT, Villegas-Torres O (2008) Caracterización de frutos de zapote mamey (Pouteria sapota) en el suroeste del estado de Morelos. Revi Chapingo Ser Hortic 14:41–47

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1502–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González–Hernández D, García–Pérez E, Guntin–Marey P (2012) Genetic characterization of Manilkara zapota from Veracruz, México, with SSR markers. Agrociencia 46:663–675

    Google Scholar 

  • Gordon A, Jungfer E, Da Silva BA, Maia JGS, Marx F (2011) Phenolic constituents and antioxidant capacity of four underutilized fruits from the Amazon region. J Agric Food Chem 59:7688–7699

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2002) Fstat version 1.2: a program to estimate and test gene diversities and fixation indices. J Hered 86: 485–486.

  • Gulyas-Fekete G, Murillo E, Kurtan T, Papp T, Illyes T-Z, Drahos L, Visy J, Agocs A, Turcsi E, Deli J (2013) Cryptocapsinepoxide-type carotenoids from red mamey, Pouteria sapota. J Nat Prod 76:607–614

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL (1983) The distribution of genetic variation within and among natural plant populations. In: Schonewald­Cox CM, Chambers SM, MacBryde B, Thomas L (eds) Genetics and conservation. Benjamin-Cummings, London, pp 335–348

    Google Scholar 

  • Haq N, Bowe C, Dunsiger ZE (2008) Challenges to stimulating the adoption and impact of indigenous fruit trees in tropical agriculture. In: Akinnifesi FK, RRB L, Ajayi OC, Sileshi G, Tchoundjeu Z, Matakala P, Kwesiga FR (eds) Indigenous fruit trees in the tropics: domestication, utilization and commercialization. CAB International, Wallingford, pp 50–69

    Google Scholar 

  • Ibarra-Estrada ME (2012) Morfología de frutos, perfil de acidos grasos en semilla y diversidad genetica molecular en selecciones de zapote mamey (Pouteria sapota (Jacq.) H. E. Moore & Stearn). Dissertation, Colegio de Postgraduados, México

  • Jamnadass R, Lowe A, Dawson IK (2009) Molecular markers and the management of tropical trees: the case of indigenous fruits. Trop Plant Biol 2(1):1–12

    Article  Google Scholar 

  • Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Knight RJ, Campbell CW, Campbell RJ (1993) Pollination requirements for successful fruiting of tropical fruit species. Proc Interam Soc Trop Hortic 37:167–170

    Google Scholar 

  • Langella O (2002) Populations 1.2.28: Population genetic software: individuals or populations distances based on allelic frequencies, phylogenetic trees, file conversions. Available at: http://bioinformatics.org/project/?group_id=84. Accessed 15 Mar 2019

  • León J (1987) Sapotáceas. Botánica de los cultivos tropicales. Instituto Interamericano de Cooperación para la Agricultura. Second edn. San José de Costa Rica, pp 208–216

  • Luikart G, Cornuet JM (1997) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • Martínez-Gallardo R, Sánchez-Cordero V (1997) Historia natural de algunas especies de mamíferos terrestres. In: González SE, Dirzo R, Vogt R (eds) Historia natural de los Tuxtlas. Universidad Nacional Autónoma de México, México, pp 25–31

    Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98:1389–1414

    Article  PubMed  Google Scholar 

  • Moo-Huchin V, Estrada-Mota I, Estrada-León R, Cuevas-Glory LF, Sauri-Duch E (2013) Chemical composition of crude oil from the seeds of pumpkin (Cucurbita spp.) and mamey sapota (Pouteria sapota Jacq.) grown in Yucatan, Mexico. CyTA - J Food 11:324–327

    Article  CAS  Google Scholar 

  • Murillo E, MClean R, Britton G, Agocs A, Nagy V, Deli J (2011) Sapotexanthin, an A-provitamin carotenoid from red mamey (Pouteria sapota). J Nat Prod 74:283–285

    Article  CAS  PubMed  Google Scholar 

  • Nascimento VE, Martins ABG, Hojo RH (2008) Caracteizaçao física e química de fruto de mamey. Rev Bras Frutic 30:953–957

    Article  Google Scholar 

  • Nava-Cruz Y, Ricker M (2004) El Zapote mamey (Pouteria sapota (Jacq.) H. Moore y Stearn), un fruto de la selva Mexicana con alto valor comercial. In: Alexiades MN, Shanley P (eds) Productos Forestales, Medios de Subsistencia y Conservación: Estudios de Caso Sobre Sistemas de Manejo de Productos Forestales no Maderables, vol 3. Center for International Forestry Research (CIFOR), Bogor, pp 43–62

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Normah MN, Malik SK, Chaudhury R, Salma I, Makeen MA (2013) Conservation of tropical fruit genetic resources. In: Normah M, Chin H, Reed B (eds) Conservation of tropical plant species. Springer, New York, pp 137–170

    Chapter  Google Scholar 

  • Ortiz SFJ, Cabello GT (1991) Use of insects in the pollination of subtropical crops. Agrícola Vergel 10(119):692–695

    Google Scholar 

  • Paull RE, Duarte O (2012) Tropical fruits. CAB International, London

    Book  Google Scholar 

  • Pennington TD (1990) Flora neotropical monograph 52: Sapotaceae. The New York Botanical Garden, Bronx

    Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RV, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tiss Org 68:1–19

    Article  Google Scholar 

  • Rennó AVC (2007) Desenvolvimiento e aplicacoes de microssatélites, análise cpDNA e modelagem computacional para estudos da estrutura e dinámica genética de macaranduba –Manilkara huberi (Ducke) Standl. Sapotaceae. Disertation. Universidade de Brasilia, Brasil

  • Rodríguez-Rojas T, Andrade-Rodríguez M, Alia-Tejacal I, López-Martínez V, Espinosa-Zaragosa S, Esquinca-Avilés H (2012) Caracterización molecular de Zapote mamey (Pouteria sapota (Jacq.) Moore & Stearn). Rev Fac Agron Luz 29:339–354

    Google Scholar 

  • Rohlf FJ (2001) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Publishing, Setauket

    Google Scholar 

  • SIAP (2015) Anuario estadístico de la producción de los Estados Unidos Mexicanos. Secretaría de Agricultura, Ganadería y Desarrollo Rural, México. www.siap.gob.mx. Accessed 15 December 2017

  • Schreckenberg K, Awono A, Degrade D, Bosso CM, Ndoye O, Tchoundjeu Z (2006) Domesticating indigenous fruit trees as a contribution to poverty reduction. For Tree Livelihoods 16:35–51

    Article  Google Scholar 

  • Schroeder JW, Tran HT, Dick CW (2014) Fine scale spatial genetic structure in Pouteria reticulata (Engl.) Eyma (Sapotaceae), a dioecious, vertebrate dispersed tropical rain forest tree species. Global Ecol Conserv 1:43–49

    Article  Google Scholar 

  • Slatkin M, Excoffier L (1996) Testing for linkage disequilibrium in genotypic data using the EM algorithm. Heredity 76:377–383

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo CL (2009) Efecto de la fragmentación en la estructura genética y en características de historias de vida de Sideroxylon portoricense (Sapotaceae) en la selva de los Tuxtlas Veracruz, México. Dissertation, UNAM, México

  • Van Oosterhout TC, Hutchinson WF, Wills DP, Shipñey P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Villarreal-Fuentes JM, Alia-Tejacal I, Hernández E, Pelayo-Zaldivar C, Franco-Mora O (2015) Caracterización poscosecha de selecciones de zapote mamey (Pouteria sapota (Jacq.) H. E. Moore & Stearn) procedentes del Soconusco, Chiapas. Ecosist Rec Agropec 2(5):217–224

    Google Scholar 

  • Villegas-Monter A, Escobar-Sandoval CM, Arrieta-Ramos G, Berdeja-Arbeu R (2016) Zapote mamey [Pouteria sapota (Jacq.) Moore & Stearn], diversity and uses. AgroProductividad 9(4):47–54

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Yatrib C, Belkadi B, Medraoui L, Pakhrou O, Alami M, El Mousadik A, Ferradous A, Msanda F, El Modafar C, Souda-Kouraichi SI, Filali-Maltouf A (2017) Genetic diversity and population structure of the endangered argan tree (Argania spinosa L. Skeels) in Morocco as revealed by SSR markers: implication for conservation. Aust J Crop Sci 11(10):1304–1314

    Article  Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187:319–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was done with the assistance of the Molecular Markers Laboratory, in the Natural Resources Department, of CICY. The authors thank Paulino Sima for his dedicated fieldwork assistance, Dr. Ruben Andueza for doing the N-J analysis, and Laura Mills for providing the English revision.

Data archiving statement

The above research work does not involve any novel molecular markers and hence no data or sequences have been submitted to public databases.

Funding

The second author wishes to thank CONACYT-Mexico for their generous Master’s scholarship and the academic advice of Dr. Javier Mijangos, Dr. Eduardo Morales, and Dr. Rafael Durán.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Martínez-Castillo.

Additional information

Communicated by C. Dardick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Castillo, J., Blancarte-Jasso, N.H., Chepe-Cruz, G. et al. Structure and genetic diversity in wild and cultivated populations of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: its putative domestication center. Tree Genetics & Genomes 15, 61 (2019). https://doi.org/10.1007/s11295-019-1368-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-019-1368-z

Keywords

Navigation