Skip to main content
Log in

Integrated study of surface and subsurface data for prospecting hydrogeothermal basins of hot water spring Ain El Hammam: case of Utique region basin (extreme north of Tunisia)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Utique region is located in the extreme north part of Tunisia. It is represented by the main and over exploited shallow Plio-Quaternary aquifers of Ghornata-Aousdja-Ghar el Meleh. These aquifers are captured by a good number of wells which are characterized by a cold water. Within the study region, in the Utique ruin rise the hydrothermal spring of the Ain El Hammam. It is marked by a hot temperature (36.2 °C) and low salinity 1.7 g L−1. A synthetic study integrating geological, geophysical, hydrogeological, hydrogeochemical, and geothermometry data has been applied in order to determine the reservoir of Ain El Hammam and evaluate its hydrothermal potential. The interpretation of petroleum wells and seismic lines gave a clear picture of the structure and geometry of the different sedimentary series. The geochemical data show that the thermal water of Ain El Hammam has a Na-Cl type which is due to the following: first, the abundance of the evaporitic strata, particularly halite, gypsum, and anhydrite, and second, related to direct cation exchange between groundwater and the clay fraction. The use of saturation indices for different solid phases according to the temperature and geothermometers suggests that the reservoir temperature estimated of Ain El Hammam can reach up to approximately 82 °C. Indeed, this temperature value can be attempted in a depth of almost 1800 m indicating that the reservoir of the hydrothermal spring of Ain El Hammam corresponds to the Late Triassic series. Probably, the water circulates from the Late Triassic reservoir to the surface following the fault of Utique F1 and traversing the anhydrite, gypsum, and clay of the Mio-Plio-Quaternary series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdel Zaher M, Saibi H, Nishijima J, Fujimitsu Y, Mesbah H, Ehara S (2012) Exploration and assessment of the geothermal resources in the Hammam Faraunhot spring, Sinai Peninsula, Egypt. J Asian Earth Sci 45:256–267

    Article  Google Scholar 

  • Alyahyaoui S, Zouari H (2013) Synsedimentary folding process and transtensive tectonic during Late Miocene to Quaternary in northeastern Tunisia: case of Mateur–Menzel Bourguiba region. Arab J Geosci. doi:10.1007/s12517-013-1111-2

    Google Scholar 

  • Alyahyaoui S, Gabtni H, Zouari H, Mzali H (2013) New structural elements in Tellian foreland domain of the northeastern Tunisia (Mateur Plain) after integrating geological and geophysical data. Int J Geosci 4:1061–1072

    Article  Google Scholar 

  • Apha (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA-AWWA-WET, Washington, DC

    Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam

    Google Scholar 

  • Arnorsson S (1983) Chemical equilibria in icelandic geothermal systems—implications for chemical geothermometry in investigations. Geothermics 12:119–128

    Article  Google Scholar 

  • Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47:567–577

    Article  Google Scholar 

  • Asta MP, Gimeno MJ, Auqué LF, Gómez J, Acero P, Lapuente P (2012) Hydrochemistry and geothermometrical modeling of low-temperature Panticosa geothermal system (Spain). J Volcanol Geotherm Res 235–236:84–95

    Article  Google Scholar 

  • Avşar O, Güleç N, Parlaktuna M (2013) Hydrogeochemical characterization and conceptual modeling of the Edremit geothermal field (NW Turkey). J Volcanol Geotherm Res 262:68–79

    Article  Google Scholar 

  • Ayling B, Moore J (2013) Fluid geochemistry at the Raft River geothermal field, Idaho, USA. New data and hydrogeological implications. Geothermics 47:116–126

    Article  Google Scholar 

  • Ben Ayed N (1986) Evolution tectonique de l'avant-pays de la chaine alpine de Tunisie du début, du Mésozoique à l'Actuel. Thèse Doctorat d'Etat. Univ. Paris Sud, Centre d'Orsay, pp 286

  • Ben Brahim F, Makni J, Bouri S (2013) Properties of geothermal resources in Kebilli region, Southwestern Tunisia. Environ Earth Sci 69:885–897

    Article  Google Scholar 

  • Ben Dhia H (1983) Les provinces géothermiques de la Tunisie méridionale. Thèse de Doctorat en Sciences Naturelles. Univ. Bordeaux I., 196 p

  • Ben Dhia H (1987a) Geothermal energy in Tunisia: potential of the Southern Province. Geothermics 16:299–318

    Article  Google Scholar 

  • Ben Dhia H (1987) La carte du gradient géothermique de Tunisie-Etablissement à partir des données de température pétrolières. Bulletin Centre Recherche Exploration. Production Elf Aquitaine, II, 221–231

  • Ben Dhia H, Meddeb N (1990) Application of chemical geothermometers to some Tunisian hot springs. Geothermics 19:87–104

    Article  Google Scholar 

  • Bjork G, Winsor P (2006) The deep waters of the Eurasian Basin, Arctic Ocean: geothermal heat flow, mixing and renewal. Deep-Sea Res 53:1253–1271

    Article  Google Scholar 

  • Bouchouicha S (2004) Etude hydrogéologique de la nappe Utique-Aousja. Vulnerabilité et établissement des perimètres de protection. Mémoire de Mastère, FS-Bizerte, Tunisia, pp 84

  • Bouri S (1994) Hydrothermie de surface et potentialités hydrogéothermiques du Nord tunisien. Thèse de 3ème cycle, ENI-Sfax, Tunisia

  • Bouri S, Gasmi M, Jaouadi M, Souissi I, Lahlou Mimi A, Ben Dhia H (2007) Etude intégrée des données de surface et de subsurface pour la prospection des bassins hydrogéothermiques: cas du bassin de Maknassy (Tunisie centrale). J Hydrolog Sci 52:1298–1315

    Article  Google Scholar 

  • Bouri S, Makni J, Ben Dhia H (2008) A synthetic approach integrating surface and subsurface data for prospecting deep aquifers: the Southeast Tunisia. Environ Geol 54:1473–1484

    Article  Google Scholar 

  • Bouzouraa H (2009) Déduction des sources de salinité et modélisation de l’aquifère côtier de « Ghar El Melah – Aousja – Kalâat Landalous » Mémoire de Mastère, ENI-Tunis, Tunisia, pp 157

  • Bundschuh J, Prakash Maityc J, Nathd B, Babae A, Gunduzf O, Kulpg TR, Jeanh JS, Karh S, Yangh HJ, Tsengc YJ, Bhattacharyab P, Chenc CY (2013) Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources. J Hazard Mater 262:951–959

    Article  Google Scholar 

  • Burollet PF (1951) Etude géologique des bassins mio-pliocènes du Nord- Est de la Tunisie. Ann Mines et Géol Tunis (7), 91p

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Mines Géol Tunis n° 18, 350 p

  • Burrolet PF, Dumon E (1949) Carte géologique de la région de Porto Farina 1:50,000, 1952. Edit Serv Géol (ONM)

  • Calmbach L (1995) HYDROWIN Computer Programme. Version 3.0. Institut de Minéralogie BFSH 2, 1015 Lausanne

  • Carlino S, Somma R, Troiano A, Di Giuseppe MG, Troise C, De Natale G (2014) The geothermal system of Ischia Island (southern Italy): critical review and sustainability analysis of geothermal resource for electricity generation. Renew Energy 62:177–196

    Article  Google Scholar 

  • Castany G (1967) Traité pratique des eaux souterraines. 2 ème ed., Dunod, Paris, 653p

  • Chae G, Yun S, Kim K, Mayer B (2006) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water- rock interaction and hydrologic mixing. J hydrol 321:326–343

    Article  Google Scholar 

  • Chulli B, Davraz A, Makni J, Bedir M, Ben Dhia H (2012) Hydrogeological investigations of thermal waters in the Sfax Basin (Tunisia). Environ Earth Sci 66:1–16

    Article  Google Scholar 

  • Cruz JV, Franca Z (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geotherm Res 151:382–398

    Article  Google Scholar 

  • D’Amore F, Scandifio G, Panichi C (1983) Some observation on the chemical classification of ground waters. Geothermics 12(2/3):141–148

    Article  Google Scholar 

  • Diamond RE, Harris C (2000) Oxygen and hydrogen isotope geochemistry of thermal springs of the Western Cape, South Africa: recharge at high altitude? J Afr Earth Sci 31:467–481

    Article  Google Scholar 

  • Djidi K, Bacalowicz M, Benali AM (2008) Mixed classical and hydrothermal karstification in a carbonate aquifer hydrogeological consequences. The case of the Saida aquifer system, Algeria. Compt Rendus Geosci 340:462–473

    Article  Google Scholar 

  • Dlala M (1995) Evolution géodynamique et tectonique superposées en Tunisie ; implications sur la tectonique récente et la sismicité. Tunis II

  • Fouillac G, Michard G (1981) Sodium/lithium ratio in water applied to geothermal reservoirs. Geothermics 10:55–70

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for the Na-K geothermometer. Geotherm Res Counc Trans 3:221–224

    Google Scholar 

  • Fournier RO (1991) Water geothermometers applied to geothermal energy. In: D'Amore F (ed) Application of geochemistry in geothermal reservoir development. UNITAR/UNDP Publication, Roma, pp 37–69

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural water. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Fourré E, Di Napoli R, Aiuppa A, Parello F, Gaubi E, Jean-Baptiste P, Allard P, Calabrese S, Ben Mamou A (2011) Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia. J Chem Geol 288:67–85

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria derivation of Na–K–Mg–Ca geoindicator. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giordano G, Pinton A, Cianfarra P, Baez W, Chiodi A, Viramonte J, Norini G, Groppelli G (2013) Structural control on geothermal circulation in the Cerro Tuzgle–Tocomar geothermal volcanic area (Puna plateau, Argentina). J Volcanol Geotherm Res 249:77–94

    Article  Google Scholar 

  • Gob S, Loges A, Nolde N, Bau M, Jacob DE, Markl G (2013) Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water–rock interaction. Appl Geochem 33:127–152

    Article  Google Scholar 

  • Gouasmia M (2003) Contribution de la géophysique à l’évaluation du potentiel hydrothermal dans le secteur de Hmeima – Boujabeur: Tunisie Centre-Ouest. D.E.A. Fac. Sci. Bizerte – Univ. 7 Novembre –Carthage, pp 104

  • Gouasmia M, Gasmi M, Mhamdi A, Bouri S, Ben Dhia H (2004) Contribution de la prospection électrique à l’étude d’un aquifère thermal dans la zone de Hmeima – Boujabeur (Tunisie Centre-Ouest). Actes du deuxième colloque de géophysique appliquée (CGA2), Marrakech, Maroc, pp.46–48

  • Grobe M, Machel HG (2002) Saline groundwater in the Munsterland Cretaceous Basin, Germany: clues to its origin and evolution. Mar Pet Geol 19:307–322

    Article  Google Scholar 

  • Grobe M, Machel HG, Heuser H (2000) Origin and evolution of saline groundwater in the Munsterland Cretaceous Basin, Germany: oxygen, hydrogen and strontium isotope evidence. J Geochem Explor 69:5–9

    Article  Google Scholar 

  • Guo Q (2012) Hydrogeochemistry of high-temperature geothermal systems in China: a review. Appl Geochem 27:1887–1898

    Article  Google Scholar 

  • Guo Q, Wang Y, Liu W (2007) Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China. J Volcanol Geotherm Res 166:255–268

    Article  Google Scholar 

  • Han DM, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J Volcanol Geotherm Res 189:92–104

    Article  Google Scholar 

  • Hussein MT, Lashin A, Al Bassam A, Al Arifi N, Al Zahrani I (2013) Geothermal power potential at the western coastal part of Saudi Arabia. Renew Sust Energ Rev 26:668–684

    Article  Google Scholar 

  • INM (2008) Institut National de la Météorologie; Tableaux climatiques mensuels. Archive INM pour la période de 1997–2008. Station de Aousja et de Ghar el Melah

  • Inoubli N, Gouasmia M, Gasmi M, Mhamdi A, Ben Dhia H (2006) Integration of geological, hydrochemical and geophysical methods for prospecting thermal water resources: the case of the Hmeïma region (Central–Western Tunisia). J Afr Earth Sci 46:180–186

    Article  Google Scholar 

  • Iundt F (1971) Potentiel géothermique de la Tunisie. Etude géochimique. Bureau de Recherches Géologiques et Minières. Service Géologique National, Orleans

    Google Scholar 

  • Jaddaoui H (2010) Etude Hydrogéologique et hydrochimique de la nappe Ghornata Aousja-Ghar El Melah. Mémoire de Mastère. Univ.Carthage. Faculté. Sci. Bizerte, pp146

  • Jauzein A (1962) Carte géologique de la région de Ariana 1:50,000, 1952. Edit Serv Géol (ONM)

  • Kaasalainen H, Stefánsson A (2012) The chemistry of trace elements in surface geothermal waters and steam, Iceland. Chem Geol 330-331:60–85

    Article  Google Scholar 

  • Kacem J (2004) Etude sismotectonique et évaluation de l’alea sismique régional du Nord-Est de la Tunisie: apport de la sismique réflexion dans l’identification des sources sismogeniques, Thèse, Univ. Tunis El Manar, Fac.Sci.Tunis, 168p

  • Kaiser MF, Ahmed S (2013) Optimal thermal water locations along the Gulf of Suez coastal zones, Egypt. Renew Energy 55:374–379

    Article  Google Scholar 

  • Kamel S (2012) Application of selected geothermometers to Continental Intercalaire thermal water in southern Tunisia. Geothermics 41:63–73

    Article  Google Scholar 

  • Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naser ND, McCulloh TH (eds) Thermal History of Sedimentary Basins; Methods and Case Histories. Springer, New York, pp 99–117

    Chapter  Google Scholar 

  • Kharaka YK, Lico MS, Law LM (1982) Chemical geothermometers applied to formation waters, Gulf of Mexico and California Basins. Am Assoc Petrol Geol Bull 66:538

    Google Scholar 

  • Lakhdar A, Ntarmouchant A, Ribeiro ML, Beqqali M, Elouadeihe K, Benaabidate L, Dahire M, Driouche Y, Ben Slimane A (2006) New geological and geochemical approach of the Moulay Yacoub Hydrothermal Complex (northern border of the South Rifain’s Furrow). Comun Geol 93:185–204

    Google Scholar 

  • Langelier WF, Ludwig HF (1942) Graphical method for indicating the mineral character of natural waters. J Am Water Works Assoc 34:334–335

    Google Scholar 

  • Makni J, Bouri S, Ben Dhia H (2012) Hydrochemistry and geothermometry of thermal groundwater of southeastern Tunisia (Gabes region). Arab J Geosci 6:2673–2683

    Article  Google Scholar 

  • Makni J, Ben Brahim F, Hassine S, Bouri S, Ben Dhia H (2013) Hydrogeological and mixing process of waters in deep aquifers in arid regions: south east Tunisia. Arab J Geosci

  • Meddeb MN (1993) Potentialités géothermiques de la Tunisie Septentrionale. Thèse de Doctorat de spécialité. Fac. Sci. Tunis—Univ. Tunis II, pp 193

  • Mejri L, Regard V, Carretier S, Brusset S, Dlala M (2010) Evidence of Quaternary active folding near Utique (Northeast Tunisia) from tectonic observations and a seismic profile. tectonics, tectonophysics. Compt Rendus Geosci 342:864–872

    Article  Google Scholar 

  • Melki F, Zouaghi T, Ben Chelbi M, Bedir M, Zargouni F (2010) Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore. Compt Rendus Geosci 342:741–753

    Article  Google Scholar 

  • Melki F, Zouaghi T, Harrab S, Casas Sainz A, Bédir M, Zargouni F (2011) Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia. J Geodyn 52:57–69

    Article  Google Scholar 

  • Nieva D, Nieva R (1987) Developments in Geothermal Energy in Mexico. XII: a cationic geothermometer for prospecting of geothermal resources, heat recovery systems and CHP. ISSN 0890–4332

  • Noda T, Shimada K (1993) Water mixing model calculation for evaluation of deep geothermal water. Geothermics 22:165–180

    Article  Google Scholar 

  • Ohwada M, Satake H, Nagao K, Kazahaya K (2007) Formation processes of thermal waters in Green Tuff: a geochemical study in the Hokuriku district, central Japan. J Volcanol Geotherm Res 168:55–67

    Article  Google Scholar 

  • Ozen T, Bulbul A, Tarcan G (2012) Reservoir and hydrogeochemical characterizations of geothermal fields in Salihli, Turkey. J Asian Earth Sci 60:1–17

    Article  Google Scholar 

  • Park S-S, Yun S-T, Chae G-T, Hutcheon I, Koh Y-K, So C-S, Choi H-S (2006) Temperature evaluation of the Bugok geothermal system, South Korea. Geothermics 35:448–469

    Article  Google Scholar 

  • Pini S, Kchouk F (1965) Carte géologique de la région de Porto Farina 1:50,000, 1952. Edit Serv Géol (ONM)

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25:914–923

    Article  Google Scholar 

  • Rigo L, Garde S, El Euchi H, Bandt K, Tiffert J (1996) Mesozoic fractured reservoirs in a compressional structural model for the North-Eastern Tunisian atlasic. Proceedings of the 5th Tunisian Petroleum Exploration and Production Conferences, Tunis, p 233–255

  • Rodier J (2009) L’analyse de l’eau: eaux naturelles, eaux résiduaires, eau de mer, 9th edn. Dunod, Belgique, p 1530

    Google Scholar 

  • Rouvier H (1977) Géologie de l’Extrême Nord-Tunisien [thesis]: Paris, France, Université Pierre et Marie Curie, 1000 p

  • Sadki O (1998) Etude des systèmes hydrothermaux du Nord de la Tunisie: Géochimie des interactions eaux- roches et circulation hydrothermale. Thèse de Doctorat. Faculté des sciences de Tunis. Université Tunis II FST, pp 246

  • Schoeller H (1962) Les eaux souterraines. Masson & Cie, Paris

    Google Scholar 

  • Simler R (2013) D I A G R A M M E S: logiciel d’hydrochimie multi langage en distribution libre, version 6. Laboratoire d’Hydrogéologie d’Avignon

  • Sonney R, Vuataz FD (2008) Properties of geothermal fluids in Switzerland: a new interactive database. Geothermics 37:496–509

    Article  Google Scholar 

  • Taran Y, Morán-Zenteno D, Inguaggiato S, Varley N, Luna-González L (2013) Geochemistry of thermal springs and geodynamics of the convergent Mexican Pacific margin. Chem Geol 339:251–262

    Article  Google Scholar 

  • Tonani F (1980) Some remarks on the application of geochemical techniques in geothermal exploration. In: Proceedings of advanced European geothermal resource 2nd symposium, Strasbourg, pp 428–443

  • Truesdell A.H. (1976) Summary of section III geochemical techniques in geothermal exploration. Proceedings, Second U.N. Symposium. on the Development and Use of Geothermal Resources, San Francisco 1, liii-1xiii

  • Wurl J, Mendez Rodriguez LC, Cassassus F, Martinez Gutiérrez G, Ramos Velazquez E (2013) Geothermal water in the San Juan Bautista Lando aquifer, BCS, Mexico. Procedia Earth Planet Sci 7:900–903

    Article  Google Scholar 

  • Zouaghi T, Bédir M, Melki F, Gabtni H, Gharsali R, Bessioud A, Zargouni F (2010) Neogene sediment deformations and tectonic features of northeastern Tunisian: evidence for paleoseismicity. Arab J Geosci 4:1301–1314

    Article  Google Scholar 

  • Zouari K (1983) Etude Isotopique et Géochimique de l’infiltration naturelle en zone non saturée sous climat semi-aride (Sud Tunisie). Thèse de doctorat. Université Paris Sud, pp 133

  • Zouitten S (1999) Application de la géothermomètrie chimique aux eaux des sources thermales du Nord de la Tunisie. Thèse de doctorat. Université Tunis II FST, pp 207

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mouna Andolssi or Sofien Alyahyaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andolssi, M., Alyahyaoui, S., Makni, J. et al. Integrated study of surface and subsurface data for prospecting hydrogeothermal basins of hot water spring Ain El Hammam: case of Utique region basin (extreme north of Tunisia). Arab J Geosci 8, 8879–8897 (2015). https://doi.org/10.1007/s12517-014-1743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-014-1743-x

Keywords

Navigation