Skip to main content

Advertisement

Log in

Potentially Toxic Metals (PTMs) in Soil-Dust-Plant Total Environment and Associated Exposure Risks for Children (0–6) Based on Site-Specific Blood Lead Levels: A Comprehensive Investigation for the City of Lanzhou in Northwest China

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

Systematic understanding of the status of potentially toxic metals (PTMs) in soil, dust and plant is of great need for their negative impacts on human and environmental health. Characterization and screening of PTMs will play an important role in health risk assessment and pollution control. In this study, a comprehensive investigation is conducted to explore the spatial occurrences, pollution status and health risks of 19 PTMs and 6 major elements (As, Ba, Ce, Co, Cr, Cu, Ga, La, Mn, Ni, Pb, Rb, Sr, Th, U, V, Y, Zn, Zr, Al, Ca, Fe, K, Mg, Na) in urban soil, street dust and plants in the City of Lanzhou in northwest China. Most PTMs in urban soil, dust and plant have similar spatial patterns and pose pollution to some extent. The priority metals Pb, Cu, Zn from traffic sources have similar tendency transferring among soil-dust-plant environment in comparison to other metals which prefer to accumulate in dust. PMF analyses confirm that coal combustion and industrial emission are important origins for metals in addition to traffic sources. Total carcinogenic risk of toxic metals in dust and soil for children are unacceptable compared to adults. Site-specific blood lead levels (BLLs) are predicted according to the occurrences of priority contaminant Pb in the urban environment. Children of less than three years old have higher BLLs than those of 4–6 years old. The highest BLL for children of 1–2 years old is up to 90 μg·L−1, which is almost twice the US CDC Acceptable Threshold (50 μg·L−1) even though it is still below the China Acceptable Limit (100 μg·L−1). Therefore, attention to Pb contaminant prevention and measurement including complete environmental cleaning and screening of BLLs periodically for children 0–6 years old.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ağca N (2015) Spatial distribution of heavy metal content in soils around an industrial area in Southern Turkey. Arab J Geosci 8(2):1111–1123

    Article  CAS  Google Scholar 

  • Akoto O, Bismark EF, Darko G, Adei E (2014) Concentrations and health risk assessments of heavy metals in fish from the Fosu Lagoon. Int J Environ Res 8:403–410

    Google Scholar 

  • Akoto O, Gyimah E, Zhan Z, Xu H, Nimako C (2020) Evaluation of health risks associated with trace metal exposure in water from the Barekese reservoir in Kumasi, Ghana. Hum Ecol Risk Assess Int J 26(4):1134–1148

    Article  CAS  Google Scholar 

  • Alahmr FOM, Othman M, Abd Wahid NB, Halim AA, Latif MT (2012) Compositions of dust fall around semi-urban areas in Malaysia. Aerosol and Air Quality Res 12(4):629–642

    Article  CAS  Google Scholar 

  • Alastuey A, Querol X, Plana F, Viana M, Ruiz CR, Campa ASDL, Rosa JDL, Mantilla E, Santos SGD (2006) Identification and chemical characterization of industrial particulate matter sources in southwest Spain. J Air Waste Manag Assoc 56(7):993–1006

    Article  CAS  Google Scholar 

  • Alhamdani YA, Hassim MH, Shaik SM, Jalil AA (2018) Hybrid tool for occupational health risk assessment and fugitiveemissions control in chemical processes based on the source, path andreceptor concept. Process Saf Environ Protect 118:348–360

    Article  CAS  Google Scholar 

  • Ali N, Shahzad K, Rashid MI, Shen H, Ismail IMI, Eqani SAMAS (2017) Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000–2016). Environ Sci Pollut Res 24(23):18721–18741

    Article  CAS  Google Scholar 

  • Benfenati E, Valzacchi S, Mariani G, Airoldi L, Fanelli R (1992) PCDD, PCDF, PCB, PAH, cadmium and lead in roadside soil: relationship between road distance and concentration. Chemosphere 24(8):1077–1083

    Article  CAS  Google Scholar 

  • Birmili W, Allen AG, Bary F, Harrison RM (2006) Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environ Sci Technol 40(4):1144–1153

    Article  CAS  Google Scholar 

  • Bourliva A, Christophoridis C, Papadopoulou L, Giouri K, Papadopoulos A, Mitsika E, Fytianos K (2017) Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki. Greece Environ Geochem Health 39(3):611–634

    Article  CAS  Google Scholar 

  • Buccolieri A, Buccolieri G, Dell’Atti A, Strisciullo G, Gagliano-Candela R (2010) Monitoring of total and bioavailable heavy metals concentration in agricultural soils. Environ Monit Assess 168(1–4):547–560

    Article  CAS  Google Scholar 

  • Cai K, Li C (2019) Street dust heavy metal pollution source apportionment and sustainable management in a typical city—Shijiazhuang, China. Int J Environ Res Public Health 16(14):2625

    Article  CAS  Google Scholar 

  • Cao Y, Li X, He F, Sun X, Zhang X, Yang T, Dong J, Gao Y, Zhou Q, Shi D, Wang J, Yu H (2021) Comprehensive screen the lead and other toxic metals in total environment from a coal-gas industrial city (NW, China): based on integrated source-specific risks and site-specific blood lead levels of 0-6 aged children. Chemosphere 278:130416

    Article  CAS  Google Scholar 

  • Carlosena A, Andrade JM, Prada D (1998) Searching for heavy metals grouping roadside soils as a function of motorized traffic influence. Talanta 47(3):753–767

    Article  CAS  Google Scholar 

  • CEMS (China Environmental Monitoring Station) (1990) Background Values of Chinese Soil Element. China Environmental Science Press, Beijing

    Google Scholar 

  • Charlesworth S, De Miguel E, Ordóñez A (2011) A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ Geochem Health 33(2):103–123

    Article  CAS  Google Scholar 

  • Charlesworth S, Everett M, McCarthy R, Ordonez A, De Miguel E (2003) A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands. UK Environment International 29(5):563–573

    Article  CAS  Google Scholar 

  • Chen TB, Zheng YM, Lei M, Huang ZC, Wu HT, Chen H, Fan KK, Yu K, Wu X, Tian QZ (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing. China Chemosphere 60(4):542–551

    Article  CAS  Google Scholar 

  • Cheng H, Li M, Zhao C, Li K, Peng M, Qin A, Cheng X (2014) Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor 139:31–52

    Article  CAS  Google Scholar 

  • Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region. Greece Geoderma 151(3–4):257–263

    Article  CAS  Google Scholar 

  • de Miguel E, Llamas JF, Chacón E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31(17):2733–2740

    Article  Google Scholar 

  • de Oliveira VH, de Abreu CA, Coelho RM, Melo LCA (2014) Cadmium background concentrations to establish reference quality values for soils of São Paulo State. Brazil Environmental Monitoring and Assessment 186(3):1399–1408

    Article  CAS  Google Scholar 

  • China EPA (2016) Report of Environmental Exposure Related Activity Patterns Research of Chinese Population (Children). China Environmental Science Press, Beijing

    Google Scholar 

  • EPA US. 2007. United States Environmental Protection Agency. Quality Assurance Guidance Document-Model Quality Assurance Project Plan for the PM Ambient Air2.

  • Fakayode SO, Olu-Owolabi BI (2003) Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways. Environ Geol 44(2):150–157

    Article  CAS  Google Scholar 

  • Falahi-Ardakani A (1984) Contamination of environment with heavy metals emitted from automotives. Ecotoxicol Environ Saf 8(2):152–161

    Article  CAS  Google Scholar 

  • Feng S, Liu H, Zhang N, Lin H, Du X, Liu Y (2012) Contamination assessment of copper, lead, zinc and chromium in dust fall of Jinan. NE China Environmental Earth Sciences 66(7):1881–1886

    Article  CAS  Google Scholar 

  • Finkelman RB (1994) Abundance, source, and mode of occurrence of the inorganic constituents in coal. In: Kural O (ed) Coal: Resources, Properties, Utilization. Istanbul Technical University, Istanbul, Turkey, Pollution., pp 115–125

    Google Scholar 

  • Gao Y, Li X., Dong J, Cao Y, Li T, Mielke HW (2020) Snack foods and lead ingestion risks for school aged children: a comparative evaluation of potentially toxic metals and Children’s exposure response of blood lead, copper and zinc levels. Chemosphere 261:127547

  • Garcia R, Millan E (1998) Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere 37(8):1615–1625

    Article  CAS  Google Scholar 

  • Gu YG, Wang ZH, Lu SH, Jiang SJ, Mu DH, Shu YH (2012) Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China. Environ Pollut 163:248–255

    Article  CAS  Google Scholar 

  • Guan Q, Wang F, Xu C, Pan N, Lin J, Zhao R, Yang Y, Luo H (2018) Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 193:189–197

    Article  CAS  Google Scholar 

  • Guo D, Ren C, Ali A et al (2019) Streptomyces pactum combined with manure compost alters soil fertility and enzymatic activities, enhancing phytoextraction of potentially toxic metals (PTMs) in a smelter-contaminated soil. Ecotoxicol Environ Saf 181:312–320. https://doi.org/10.1016/j.ecoenv.2019.06.024

    Article  CAS  Google Scholar 

  • Guo G, Wu F, Xie F, Zhang R (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci 24(3):410–418

    Article  CAS  Google Scholar 

  • Ha H, Olson JR, Bian L, Rogerson PA (2014) Analysis of heavy metal sources in soil using kriging interpolation on principal components. Environ Sci Technol 48(9):4999–5007

    Article  CAS  Google Scholar 

  • He A, Li X, Ai Y, Li X, Li X, Zhang Y, Gao Y, Liu B, Zhang X, Zhang M, Peng L, Zhou M, Yu H (2020) Potentially toxic metals and the risk to children's health in a coal mining city: An investigation of soil and dust levels, bioaccessibility and blood lead levels. Environ Int 141:105788

  • Herngren L, Goonetilleke A, Ayoko GA (2006) Analysis of heavy metals in road-deposited sediments. Anal Chim Acta 571(2):270–278

    Article  CAS  Google Scholar 

  • Ho YB, Tai KM (1988) Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environ Pollut 49(1):37–51

    Article  CAS  Google Scholar 

  • Huang Z, Hu X, Wang C, Zou Y (2019) Soil-rice heavy metal content and migration rule in ganxian sandy land. Jiangxi Coal Science & Technology 2:9–13

    Google Scholar 

  • Hwang YH, Hsiao CK, Lin PW (2019) Globally temporal transitions of blood lead levels of preschool children across countries of different categories of Human Development Index. Science of Total Environment 659:1395–1402. https://doi.org/10.1016/j.scitotenv.2018.12.436

    Article  CAS  Google Scholar 

  • Imperato M, Adamo P, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124(2):247–256

    Article  CAS  Google Scholar 

  • Jin Y, O’Connor D, Ok YS, Tsang DC, Liu A, Hou D (2019) Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ Int 124:320–328

    Article  CAS  Google Scholar 

  • Karim Z, Qureshi BA (2014) Health risk assessment of heavy metals in urban soil of Karachi, Pakistan. Hum Ecol Risk Assess Int J 20(3):658–667

    Article  CAS  Google Scholar 

  • Kleckerova A, Docekalová H (2014) Dandelion plants as a biomonitor of urban area contamination by heavy metals. International Journal of Environment Research 8:157–164

    CAS  Google Scholar 

  • Kumar M, Nagdev R, Tripathi R, Singh VB, Ranjan P, Soheb M, Ramanathan AL (2019) Geospatial and multivariate analysis of trace metals in tubewell water using for drinking purpose in the upper Gangetic basin, India: heavy metal pollution index. Groundw Sustain Dev 8:122–133

    Article  Google Scholar 

  • Lanphear BP, Hornung R, Khoury J et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environmental Health Perspective 113(7):894–899. https://doi.org/10.1289/ehp.7688

    Article  CAS  Google Scholar 

  • Li H, Zuo XJ (2013) Speciation and size distribution of copper and zinc in urban road runoff. Bull Environ Contam Toxicol 90(4):471–476

    Article  CAS  Google Scholar 

  • Li HB, Yu S, Li GL, Deng H (2011) Contamination and source differentiation of Pb in park soils along an urban–rural gradient in Shanghai. Environ Pollut 159(12):3536–3544

    Article  CAS  Google Scholar 

  • Li HH, Chen LJ, Yu L, Guo ZB, Shan CQ, Lin JQ, Gu YG, Yang ZB, Yang YX, Shao JR, Zhu XM (2017) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    Article  CAS  Google Scholar 

  • Li M, Xi X, Xiao G, Cheng H, Yang Z, Zhou G, Ye J, Li Z (2014) National multi-purpose regional geochemical survey in China. J Geochem Explor 139:21–30

    Article  CAS  Google Scholar 

  • Li X, Feng L (2010) Spatial distribution of hazardous elements in urban topsoils surrounding Xi’an industrial areas, (NW, China): Controlling factors and contamination assessments. J Hazard Mater 174:662–669

    Article  CAS  Google Scholar 

  • Li X, Gao Yu, Meng Zhang Yu, Zhang MZ, Peng L, Ana He Xu, Zhang XY, Wang Y, Hongtao Yu (2020) In vitro lung and gastrointestinal bioaccessibility of potentially toxic metals in Pb-contaminated alkaline urban soil: The role of particle size fractions. Ecotoxicol Environ Saf 190:110151

    Article  CAS  Google Scholar 

  • Li X, Bin Liu Yu, Zhang JW, Ullah H, Zhou M, Peng L, Ana He Xu, Zhang XY, Yang T, Wang L, Hongtao Yu (2019) Spatial Distributions, Sources, Potential Risks of Multi-Trace Metal/Metalloids in Street Dusts from Barbican Downtown Embracing by Xi’an Ancient City Wall (NW, China). International Journal of Environment Research and Public Health 16:2992

    Article  CAS  Google Scholar 

  • Li X, Meng Zhang Yu, Gao YZ, Zhang Xu, Yan X, Wang S, Yang R, Liu B, Hongtao Yu (2018) Urban street dust bound 24 potentially toxic metal/metalloids (PTMs) from Xining valley-city, NW China: Spatial occurrences, sources and health risks. Ecotoxicol Environ Saf 162:474–487

    Article  CAS  Google Scholar 

  • Li X, Yan X, Wu T, Zhang X, Yu H (2021) Risks and phyto-uptake of micro-nano size particulates bound with potentially toxic metals in Pb-contaminated alkaline soil (NW China): The role of particle size fractions. Chemosphere 272:129508

    Article  CAS  Google Scholar 

  • Lin M, Gui H, Wang Y, Peng W (2017) Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou. China Environmental Science and Pollution Research 24(2):1987–1998

    Article  CAS  Google Scholar 

  • Luo XS, Ding J, Xu B, Wang YJ, Li HB, Yu S (2012) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ 424:88–96

    Article  CAS  Google Scholar 

  • Mielke Howard W., Christopher R. Gonzales, Eric T. Powell, Mark A. S. Laidlaw, Kenneth J. Berry, Paul W. Mielke Jr., and Sara Perl Egendorf. 2019.The concurrent decline of soil lead and children’s blood lead in New Orleans. PNAS, 1–7

  • National Health and Medical Research Council (NHMRC), 2015. NHMRC Statement and Information Paper: Evidence on the Effects of Lead on Human Health. Available: http://www.nhmrc.gov.au/guidelines-publications/eh58 (Accessed June 2015).

  • Ndiokwere CL (1984) A study of heavy metal pollution from motor vehicle emissions and its effect on roadside soil, vegetation and crops in Nigeria. Environ Pollut B 7(1):35–42

    Article  CAS  Google Scholar 

  • Needleman H (2009) Low level lead exposure: history and discovery. Ann Epidemiol 19(4):235–238

    Article  Google Scholar 

  • Pan H, Lu X, Lei K (2017) A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: contamination, source apportionment and spatial distribution. Sci Total Environ 609:1361–1369

    Article  CAS  Google Scholar 

  • Pandey SK, Bhattacharya T (2019) Mobility, Ecological risk and change in surface morphology during sequential chemical extraction of heavy metals in fly ash: A case study. Environ Technol Innov 13:373–382

    Article  Google Scholar 

  • Peng L, Li X, Sun X, Yang T, Zhang Y, Gao Y, Zhang X, Zhao Y, He A, Zhou M, Cao Y (2020) Comprehensive Urumqi screening for potentially toxic metals in soil-dust-plant total environment and evaluation of children’s (0–6 years) risk-based blood lead levels prediction. Chemosphere 258:127342

    Article  CAS  Google Scholar 

  • Praveena SM, Ismail SNS, Aris AZ (2015) Health risk assessment of heavy metal exposure in urban soil from Seri Kembangan (Malaysia). Arab J Geosci 8(11):9753–9761

    Article  CAS  Google Scholar 

  • Qing X, Yutong Z, Shenggao L (2015a) Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Saf 120:377–385

    Article  CAS  Google Scholar 

  • Qing Y, Cai Z, Wu Y, Yao C, Wu Q, Li X (2015b) Facile preparation of optically transparent and hydrophobic cellulose nanofibril composite films. Ind Crops Prod 77:13–20

    Article  CAS  Google Scholar 

  • Rékási M, Filep T (2012) Fractions and background concentrations of potentially toxic elements in Hungarian surface soils. Environ Monit Assess 184(12):7461–7471

    Article  CAS  Google Scholar 

  • Ren D, Zhao F, Dai S, Zhang J, Luo K (2006) Geochemistry of Trace Elements in Coals. The Science Press, Beijing, pp 268–279

    Google Scholar 

  • Saby N, Arrouays D, Boulonne L, Jolivet C, Pochot A (2006) Geostatistical assessment of Pb in soil around Paris France. Sci Total Environ 367(1):212–221

    Article  CAS  Google Scholar 

  • Saeedi M, Li LY, Salmanzadeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227:9–17

    Article  CAS  Google Scholar 

  • Safruk AM, McGregor E, Whitfield Aslund ML et al (2017) The influence of lead content in drinking water, household dust, soil, and paint on blood lead levels of children in Flin Flon, Manitoba and Creighton, Saskatchewan. Science of Total Environment 593–594:202–210

    Article  CAS  Google Scholar 

  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai. China Environmental Pollution 156(2):251–260

    Article  CAS  Google Scholar 

  • Shilton VF, Booth CA, Smith JP, Giess P, Mitchell DJ, Williams CD (2005) Magnetic properties of urban street dust and their relationship with organic matter content in the West Midlands. UK Atmospheric Environment 39(20):3651–3659

    Article  CAS  Google Scholar 

  • Ta W, Wang T, Xiao H, Zhu X, Xiao Z (2004) Gaseous and particulate air pollution in the Lanzhou Valley. China Science of the Total Environment 320(2–3):163–176

    Article  CAS  Google Scholar 

  • Tang RL, Ma KM, Zhang YX, Mao QZ (2012) Health risk assessment of heavy metals of street dust in Beijing. Acta Science Circumstance 32(8):2006–2015

    CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen 33(1):566–575

    Article  Google Scholar 

  • Tong S, Schirnding YEV, Prapamontol T (2000) Environmental lead exposure: a public health problem of global dimensions. Bull World Health Organ 78:1068–1077

    CAS  Google Scholar 

  • Trujillo-González JM, Torres-Mora MA, Keesstra S, Brevik EC, Jiménez-Ballesta R (2016) Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci Total Environ 553:636–642

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency, 1996. Soil Screening Guidance: Technical Background Document

  • Wei B, Jiang F, Li X, Mu S (2010a) Heavy metal induced ecological risk in the city of Urumqi. NW China Environmental Monitoring and Assessment 160(1–4):33

    Article  CAS  Google Scholar 

  • Wei B, Jiang F, Li X, Shuyong Mu (2010b) Heavy metal induced ecological risk in the city of Urumqi. NW China Environmental Monitoring and Assessment 160(1–4):33

    Article  CAS  Google Scholar 

  • Wei X, Gao B, Wang P, Zhou H, Lu J (2015) Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol Environ Saf 112:186–192

    Article  CAS  Google Scholar 

  • Xia X, Chen X, Liu R, Liu H (2011) Heavy metals in urban soils with various types of land use in Beijing China. J Hazardous Mater 186(2–3):2043–2050

    Article  CAS  Google Scholar 

  • Xiang L, Li YX, Shi JH, Liu JL (2010) Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in urban Beijing. Huan Jing Ke Xue 31(1):159

    Google Scholar 

  • Yang K, Cattle SR (2015) Bioaccessibility of lead in urban soil of Broken Hill, Australia: a study based on in vitro digestion and the IEUBK model. Sci Total Environ 538:922–933

    Article  CAS  Google Scholar 

  • Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City China. J Geochem Explor 108(1):27–38

    Article  CAS  Google Scholar 

  • Yu RL, Hu GR, Yuan X, Zhao YH (2009) Development in research on pollution source of heavy metals from atmospheric dust-recognition and analysis. Earth Environment 37:73–79

    CAS  Google Scholar 

  • Zahran S, Laidlaw MA, McElmurry SP, Filippelli GM, Taylor M (2013) Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit. Michigan Environmental Science & Technology 47(6):2839–2845

    Article  CAS  Google Scholar 

  • Zhang D, Lee DJ, Pan X (2014) Potentially harmful metals and metalloids in urban street dusts of Urumqi City: Comparison with Taipei City. J Taiwan Inst Chem Eng 45(5):2447–2450

    Article  CAS  Google Scholar 

  • Zhao H, Li X (2013) Understanding the relationship between heavy metals in road-deposited sediments and washoff particles in urban stormwater using simulated rainfall. J Hazard Mater 246:267–276

    Article  CAS  Google Scholar 

  • Zhao X, Yang X, Chen G, Li H, Wang C (2010) Assessment of heavy metal enrichment in vegetables of Chengdu plain. Southwest China Journal of Agricultural Sciences 23(4):1142–1146

    Google Scholar 

  • Zheng N, Liu J, Wang Q, Liang Z (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci Total Environ 408(4):726–733

    Article  CAS  Google Scholar 

  • Zhou M., Li X., Meng Zhang, Bin Liu, Yuchao Zhang, Yu Gao, Hameed Ullah, Liyuan Peng, Ana He, Hongtao Yu Water quality in a worldwide coal mining city: A scenario in water chemistry and health risks exploration. J Geochem Exploration 2020, 213: 106513

  • Zia MH, Codling EE, Scheckel KG, Chaney RL (2011) In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review. Environ Pollut 159(10):2320–2327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (41877517, 41471420), the project of International Science and Technology Innovation and Cooperation Base (2018GHJD-16), Key Research and Development Program of Shaanxi (2021KWZ-29) and Fundamental Research Funds for the Central Universities (GK202102007 and GK201701010).

Author information

Authors and Affiliations

Authors

Contributions

XL conceived and designed the experiments and organized the manuscript. HU wrote the draft. XS performed the main experiments. XY, JD, YG, YC and TL assisted data processing and software for plots. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Xiaoping Li.

Ethics declarations

Conflict of interest

This manuscript has been seen by all co-authors, and its submission has been approved by all co-authors. All the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ullah, H., Sun, X. et al. Potentially Toxic Metals (PTMs) in Soil-Dust-Plant Total Environment and Associated Exposure Risks for Children (0–6) Based on Site-Specific Blood Lead Levels: A Comprehensive Investigation for the City of Lanzhou in Northwest China. Expo Health 14, 557–580 (2022). https://doi.org/10.1007/s12403-021-00435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-021-00435-3

Keywords

Navigation