Skip to main content

Advertisement

Log in

CD1a- and CD83-positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Purpose

Dendritic cells (DCs) are the most potent antigen-presenting cells that play a major role in initiating the antitumor immune response in different types of cancer. However, the prognostic significance of the accumulation of these cells in human early breast tumors is not totally clear. The aim of this study is to evaluate the prognostic relevance of CD1a( +) and CD83( +) dendritic cells in early breast cancer patients.

Methods

We conducted immunohistochemical assays to determine the number of stromal CD1a( +) and CD83( +) DCs in primary tumors from early invasive ductal breast cancer patients, and analyzed their association with clinico-pathological characteristics.

Results

Patients with high CD1a( +) DC number had lower risk of bone metastatic occurrence, as well as, longer disease-free survival (DFS), bone metastasis-free survival (BMFS) and overall survival (OS). Moreover, CD1a( +) DC number was an independent prognostic factor for BMFS and OS. In contrast, we found that patients with high number of CD83( +) DCs had lower risk of mix (bone and visceral)-metastatic occurrence. Likewise, these patients presented better prognosis with longer DFS, mix-MFS and OS. Furthermore, CD83( +) DC number was an independent prognostic factor for DFS and OS.

Conclusion

The quantification of the stromal infiltration of DCs expressing CD1a or CD83 in early invasive breast cancer patients serves to indicate the prognostic risk of developing metastasis in a specific site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. International Agency for Research on Cancer. GLOBOCAN cancer fact sheet 2018. 2018. http://globocan.iarc.fr/factsheet/cancer.

  2. Place AE, Jin Huh S, Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 2011;13:227. https://doi.org/10.1186/bcr2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22. https://doi.org/10.1016/j.ccr.2012.02.022.

    Article  CAS  Google Scholar 

  4. Criscitiello C, Esposito A, Curigliano G. Tumor-stroma crosstalk: targeting stroma in breast cancer. Curr Opin Oncol. 2014;26:551–5. https://doi.org/10.1097/CCO.0000000000000122.

    Article  CAS  PubMed  Google Scholar 

  5. Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012;31:195–208. https://doi.org/10.1007/s10555-011-9340-x.

    Article  PubMed  Google Scholar 

  6. Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res Treat. 2020;185:261–79. https://doi.org/10.1007/s10549-020-05954-2.

    Article  CAS  PubMed  Google Scholar 

  7. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8. https://doi.org/10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  8. Bell D, Chomarat P, Broyles D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med. 1999;190:1417–26. https://doi.org/10.1084/jem.190.10.1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9:212. https://doi.org/10.1186/bcr1746

  10. Ghiringhelli F, Ménard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J Exp Med. 2005;202:1075–85. https://doi.org/10.1084/jem.20051511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Faget J, Bendriss-Vermare N, Gobert M, et al. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4 + T cells. Can Res. 2012;72:6130–41. https://doi.org/10.1158/0008-5472.CAN-12-2409.

    Article  CAS  Google Scholar 

  12. Michea P, Noël F, Zakine E, et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat Immunol. 2018;19:885–97. https://doi.org/10.1038/s41590-018-0145-8.

    Article  CAS  PubMed  Google Scholar 

  13. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61. https://doi.org/10.1016/j.ccell.2015.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Becker Y. Anticancer role of dendritic cells (DC) in human and experimental cancers—a review. Anticancer Res. 1992;12:511–20.

    CAS  PubMed  Google Scholar 

  15. Banchereau J, Steinman R. Dendritic cells and the control of immunity. Exp Hematol. 1998;392:245–52. https://doi.org/10.1038/32588.

    Article  CAS  Google Scholar 

  16. Tazi A, Bouchonnet F, Grandsaigne M, et al. Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J Clin Investig. 1993;91:566–76. https://doi.org/10.1172/JCI116236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coventry B. CD1a positive putative tumour infiltrating dendritic cells in human breast cancer. Anticancer Res. 1999;19:3183–7.

    CAS  PubMed  Google Scholar 

  18. Coventry B, Heinzel S. CD1a in human cancers: a new role for an old molecule. Trends Immunol. 2004;25:242–8. https://doi.org/10.1016/j.it.2004.03.002.

    Article  CAS  PubMed  Google Scholar 

  19. Iwamoto M, Shinohara H, Miyamoto A, et al. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer. 2003;104:92–7. https://doi.org/10.1002/ijc.10915.

    Article  CAS  PubMed  Google Scholar 

  20. Mori L, De Libero G. Presentation of lipid antigens to T cells. Immunol Lett. 2008;117:1–8. https://doi.org/10.1016/j.imlet.2007.11.027.

    Article  CAS  PubMed  Google Scholar 

  21. Salio M, Silk JD, Cerundolo V. Recent advances in processing and presentation of CD1 bound lipid antigens. Curr Opin Immunol. 2010;22:81–8. https://doi.org/10.1016/j.coi.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  22. Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol. 1999;17:297–329. https://doi.org/10.1146/annurev.immunol.17.1.297.

    Article  CAS  PubMed  Google Scholar 

  23. Kai K, Tanaka T, Ide T, et al. Immunohistochemical analysis of the aggregation of CD1a-positive dendritic cells in resected specimens and its association with surgical outcomes for patients with gallbladder cancer. Translational Oncology. 2021;14: 100923. https://doi.org/10.1016/j.tranon.2020.100923.

    Article  PubMed  Google Scholar 

  24. Golmoghaddam H, Pezeshki AM, Ghaderi A, et al. CD1a and CD1d genes polymorphisms in breast, colorectal and lung cancers. Pathology and Oncology Research. 2011;17:669–75. https://doi.org/10.1007/s12253-011-9367-x.

    Article  CAS  PubMed  Google Scholar 

  25. Ni YH, Zhang X, Xin, Lu Z yi, , et al. Tumor-Infiltrating CD1a+ DCs and CD8+/FoxP3+ Ratios Served as Predictors for Clinical Outcomes in Tongue Squamous Cell Carcinoma Patients. Pathol Oncol Res. 2020;26:1687–95. https://doi.org/10.1007/s12253-019-00701-5.

    Article  CAS  PubMed  Google Scholar 

  26. Hilly O, Rath-Wolfson L, Koren R, et al. CD1a-positive dendritic cell density predicts disease-free survival in papillary thyroid carcinoma. Pathol Res Pract. 2015;211:652–6. https://doi.org/10.1016/j.prp.2015.05.009.

    Article  CAS  PubMed  Google Scholar 

  27. Eisenthal A, Polyvkin N, BramanteSchreiber L, et al. Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Hum Pathol. 2001;32:803–7. https://doi.org/10.1053/hupa.2001.26455.

    Article  CAS  PubMed  Google Scholar 

  28. Grosche L, Knippertz I, König C, et al. The CD83 Molecule—an important immune checkpoint. Front Immunol. 2020;11:721. https://doi.org/10.3389/fimmu.2020.00721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smyth MJ, Crowe NY, Hayakawa Y, et al. NKT cells—conductors of tumor immunity? Curr Opin Immunol. 2002;14:165–71. https://doi.org/10.1016/S0952-7915(02)00316-3.

    Article  CAS  PubMed  Google Scholar 

  30. Prechtel AT, Steinkasserer A. CD83: An update on functions and prospects of the maturation marker of dendritic cells. Arch Dermatol Res. 2007;299:59–69. https://doi.org/10.1007/s00403-007-0743-z.

    Article  CAS  PubMed  Google Scholar 

  31. Tze LE, Horikawa K, Domaschenz H, et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10—Driven MARCH1-mediated ubiquitination and degradation. J Exp Med. 2011;208:149–65. https://doi.org/10.1084/jem.20092203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coventry B, Lee P, Gibbs D, et al. Dendritic cell density and activation status in human breast cancer—CD1a, CMRF-44, CMRF-56 and CD-83 expression. Br J Cancer. 2002;86:546–51. https://doi.org/10.1038/sj.bjc.6600132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. Wiley-Blackwell; 2017.

  34. Senkus E, Kyriakides S, Penault-Llorca F, et al. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:8–30. https://doi.org/10.1093/annonc/mdv298.

    Article  Google Scholar 

  35. Wernicke M, Roitman P, Manfre D, et al. Breast cancer and the stromal factor. The “prometastatic healing process” hypothesis. Medicina. 2011;71:15–21.

    PubMed  Google Scholar 

  36. Bloom HJG, Richardson WW. Histological Grading and Prognosis in Breast Cancer. Br J Cancer. 1957;11:359–77. https://doi.org/10.1038/bjc.1957.43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martinez LM, Labovsky V, De Lujan CM, et al. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE. 2015;10:e0121421. https://doi.org/10.1371/journal.pone.0121421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coventry B, Morton J. CD1a-positive infiltrating-dendritic cell density and 5-year survival from human breast cancer. Br J Cancer. 2003;89:533–8. https://doi.org/10.1038/sj.bjc.6601114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldman SA, Baker E, Weyant RJ, et al. Peritumoral CD1a-positive dendritic cells are associated with improved survival in patients with tongue carcinoma. Arch Otolaryngol Head Neck Surg. 1998;124:641–6. https://doi.org/10.1001/archotol.124.6.641.

    Article  CAS  PubMed  Google Scholar 

  40. Coventry B, Weeks S, Heckford S, et al. Lack of IL-2 cytokine expression despite Il-2 messenger RNA transcription in tumor-infiltrating lymphocytes in primary human breast carcinoma: selective expression of early activation markers. J Immunol. 1996;156:3486–92.

    CAS  PubMed  Google Scholar 

  41. Lin A, Schildknecht A, Nguyen LT, et al. Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett. 2010;127:77–84. https://doi.org/10.1016/j.imlet.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  42. Sombroek CC, Stam AGM, Masterson AJ, et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol. 2002;168:4333–43. https://doi.org/10.4049/jimmunol.168.9.4333.

    Article  CAS  PubMed  Google Scholar 

  43. Labovsky V, Martinez LM, Calcagno M de L, et al.  Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer. Tumor Biol. 2016;37:13377–84. https://doi.org/10.1007/s13277-016-5268-7.

  44. Chomarat P, Banchereau J, Davoust J, et al. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1:510–4. https://doi.org/10.1038/82763.

    Article  CAS  PubMed  Google Scholar 

  45. Delamarre L, Pack M, Chang H, et al. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 2005;307:1630–4. https://doi.org/10.1126/science.1108003.

    Article  CAS  PubMed  Google Scholar 

  46. Ara T, DeClerck YA. Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer. 2010;46:1223–31. https://doi.org/10.1016/j.ejca.2010.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Axmann R, Böhm C, Krönke G, et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 2009;60:2747–56. https://doi.org/10.1002/art.24781.

    Article  CAS  PubMed  Google Scholar 

  48. Kudo O, Sabokbar A, Pocock A, et al. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7. https://doi.org/10.1016/S8756-3282(02)00915-8.

    Article  CAS  PubMed  Google Scholar 

  49. Kovacs E. Investigation of interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130) in sera of cancer patients. Biomed Pharmacother. 2001;55:391–6. https://doi.org/10.1016/S0753-3322(01)00079-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the PIP300 (2014-2016) from the National Council of Scientific and Technical Research (CONICET), Argentina; René Barón Foundation (2016-2020), Argentina and Williams Foundation (2016-2020), Argentina.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Norma lejandra Chasseing, María Belén Giorello, and Vivian Labovsky. Metodhology: María Belén Giorello, Matas Ayelén, Marenco Pablo, Davies Kevin Mauro, Borzone Francisco Raúl, García-Rivello Hernán, and Wernicke Alejandra. Formal analysis and investigation: María Belén Giorello, Vivian Labovsky, and Calcagno María de Luján. Writing—original draft preparation: María Belén Giorello, Norma Alejandra Chasseing, Vivian Labovsky, and Leandro Marcelo Martinez. Writing—review and editing: Norma Alejandra Chasseing, Vivian Labovsky, and Leandro Marcelo Martinez. Supervision: Norma Alejandra Chasseing, Vivian Labovsky, and Leandro Marcelo Martinez.

Corresponding authors

Correspondence to Vivian Labovsky or Norma Alejandra Chasseing.

Ethics declarations

Conflict of interest

The authors declare there are no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorello, M.B., Matas, A., Marenco, P. et al. CD1a- and CD83-positive dendritic cells as prognostic markers of metastasis development in early breast cancer patients. Breast Cancer 28, 1328–1339 (2021). https://doi.org/10.1007/s12282-021-01270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-021-01270-9

Keywords

Navigation