Skip to main content
Log in

Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Optoelectronic synaptic elements are emerging functional devices for the vigorous development of advanced neuromorphic computing technology in the post-Moore era. However, optoelectronic devices based on transition metal dichalcogenides (TMDs) are limited to their poor mobilities and weak light-matter interactions, which still hardly exhibit superior device performances in the application of artificial synapses. Here, we demonstrate the successful fabrication of Au nanoparticle-coupled MoS2 heterostructures via chemical vapor deposition (CVD), where the light absorption of MoS2 is greatly enhanced and engineered by plasmonic effects. Hot electrons are excited from Au nanoparticles, and then injected into MoS2 semiconductors under the light illumination. The plasmonically-engineered photo-gating effect at the metal-semiconductor junction is demonstrated to create optoelectronic devices with excellent synaptic behaviors, especially in ultra-sensitive excitatory postsynaptic current (EPSC, 9.6 × 10−3 nA@3.4 nW·cm−2), ultralow energy consumption (34.7 pJ), long-state retention time (> 1,000 s), and tunable synaptic plasticity transitions. The material system of Au-nanoparticles coupled TMDs presents unique advantages for building artificial synapses, which may lead the future development of neuromorphic electronics in optical information sensing and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dai, S. L.; Zhao, Y. W.; Wang, Y.; Zhang, J. Y.; Fang, L.; Jin, S.; Shao, Y. L.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700.

    Article  CAS  Google Scholar 

  2. Kim, S. G.; Han, J. S.; Kim, H.; Kim, S. Y.; Jang, H. W. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 2018, 3, 1800457.

    Article  Google Scholar 

  3. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

    Article  CAS  Google Scholar 

  4. Danesh, C. D.; Shaffer, C. M.; Nathan, D.; Shenoy, R.; Tudor, A.; Tadayon, M.; Lin, Y.; Chen, Y. Synaptic resistors for concurrent inference and learning with high energy efficiency. Adv. Mater. 2019, 31, 1808032.

    Article  Google Scholar 

  5. Zhong, Y. N.; Wang, T.; Gao, X.; Xu, J. L.; Wang, S. D. Synapselike organic thin film memristors. Adv. Funct. Mater. 2018, 28, 1800854.

    Article  Google Scholar 

  6. Seo, S.; Lee, J. J.; Lee, H. J.; Lee, H. W.; Oh, S.; Lee, J. J.; Heo, K.; Park, J. H. Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2020, 2, 371–388.

    Article  CAS  Google Scholar 

  7. Han, H.; Yu, H. Y.; Wei, H. H.; Gong, J. D.; Xu, W. T. Recent progress in three-terminal artificial synapses: From device to system. Small 2019, 15, 1900695.

    Article  Google Scholar 

  8. Han, H.; Xu, Z. P.; Guo, K. X.; Ni, Y.; Ma, M. X.; Yu, H. Y.; Wei, H. H.; Gong, J. D.; Zhang, S.; Xu, W. T. Tunable synaptic plasticity in crystallized conjugated polymer nanowire artificial synapses. Adv. Intell. Syst. 2020, 2, 1900176.

    Article  Google Scholar 

  9. Sangwan, V. K.; Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517–528.

    Article  CAS  Google Scholar 

  10. Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 2015, 6, 6972.

    Article  CAS  Google Scholar 

  11. Zhou, Y.; Wu, D.; Zhu, Y. H.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu, Z. D.; Han, Y.; Downer, M. C. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 2017, 17, 5508–5513.

    Article  CAS  Google Scholar 

  12. Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.

    Article  Google Scholar 

  13. Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800.

    CAS  Google Scholar 

  14. Li, Z. W.; Xu, B. Y.; Liang, D. L.; Pan, A. L. Polarization-dependent optical properties and optoelectronic devices of 2D materials. Research 2020, 2020, 5464258.

    Article  CAS  Google Scholar 

  15. Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

    Article  CAS  Google Scholar 

  16. Jiang, J.; Hu, W. N.; Xie, D. D.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 2019, 11, 1360–1369.

    Article  CAS  Google Scholar 

  17. Cheng, Y. C.; Li, H. J. W.; Liu, B.; Jiang, L. Y.; Liu, M.; Huang, H.; Yang, J. L.; He, J.; Jiang, J. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 2020, 16, 2005217.

    Article  CAS  Google Scholar 

  18. Yi, S. G.; Park, M. U.; Kim, S. H.; Lee, C. J.; Kwon, J.; Lee, G. H.; Yoo, K. H. Artificial synaptic emulators based on MoS2 flash memory devices with double floating gates. ACS Appl. Mater. Interfaces 2018, 10, 31480–31487.

    Article  CAS  Google Scholar 

  19. Zhu, J. D.; Yang, Y. C.; Jia, R. D.; Liang, Z. X.; Zhu, W.; Rehman, Z. U.; Bao, L.; Zhang, X. X.; Cai, Y. M.; Song, L. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 2018, 30, 1800195.

    Article  Google Scholar 

  20. Du, J. Y.; Ge, C.; Riahi, H.; Guo, E. J.; He, M.; Wang, C.; Yang, G. Z.; Jin, K. J. Dual-gated MoS2 transistors for synaptic and programmable logic functions. Adv. Electron. Mater. 2020, 6, 1901408.

    Article  CAS  Google Scholar 

  21. Luo, Z. D.; Xia, X.; Yang, M. M.; Wilson, N. R.; Gruverman, A.; Alexe, M. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 2020, 14, 746–754.

    Article  CAS  Google Scholar 

  22. Zhang, M.; Fan, Z. H.; Jiang, X. X.; Zhu, H.; Chen, L.; Xia, Y. D.; Yin, J.; Liu, X. K.; Sun, Q. Q.; Zhang, D. W. MoS2-based charge-trapping synaptic device with electrical and optical modulated conductance. Nanophotonics 2020, 9, 2475–2486.

    Article  CAS  Google Scholar 

  23. Islam, M. M.; Dev, D.; Krishnaprasad, A.; Tetard, L.; Roy, T. Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 2020, 10, 21870.

    Article  CAS  Google Scholar 

  24. Fan, X. F.; Zheng, W. T.; Singh, D. J. Light scattering and surface plasmons on small spherical particles. Light:Sci. Appl. 2014, 3, e179.

    Article  CAS  Google Scholar 

  25. Li, Y.; Li, Z. W.; Chi, C.; Shan, H. Y.; Zheng, L. H.; Fang, Z. Y. Plasmonics of 2D nanomaterials: Properties and applications. Adv. Sci. 2017, 4, 1600430.

    Article  Google Scholar 

  26. Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S. Q.; Shi, F. Y.; Li, Q. Q.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Au@MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett. 2016, 16, 7696–7702.

    Article  CAS  Google Scholar 

  27. Wang, H.; Li, S. S.; Ai, R. Q.; Huang, H.; Shao, L.; Wang, J. F. Plasmonically enabled two-dimensional material-based optoelectronic devices. Nanoscale 2020, 12, 8095–8108.

    Article  CAS  Google Scholar 

  28. Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 2015, 11, 2392–2398.

    Article  CAS  Google Scholar 

  29. Li, J. L.; Nie, C. B.; Sun, F. Y.; Tang, L. L.; Zhang, Z. J.; Zhang, J. D.; Zhao, Y.; Shen, J.; Feng, S. L.; Shi, H. F. et al. Enhancement of the photoresponse of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces 2020, 12, 8429–8436.

    Article  CAS  Google Scholar 

  30. He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.

    Article  CAS  Google Scholar 

  31. Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063–2070.

    Article  CAS  Google Scholar 

  32. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and inplane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  CAS  Google Scholar 

  33. Song, B. A.; He, K.; Yuan, Y. F.; Sharifi-Asl, S.; Cheng, M.; Lu, J.; Saidi, W. A.; Shahbazian-Yassar, R. In situ study of nucleation and growth dynamics of Au nanoparticles on MoS2 nanoflakes. Nanoscale 2018, 10, 15809–15818.

    Article  CAS  Google Scholar 

  34. Bian, P. X.; Zhang, J. X.; Wang, J. Y.; Yang, J.; Wang, J. Y.; Liu, H. L.; Sun, Y. M.; Li, M. X.; Zhang, X. D. Enhanced catalysis of ultrasmall Au-MoS2 clusters against reactive oxygen species for radiation protection. Sci. Bull. 2018, 63, 925–934.

    Article  CAS  Google Scholar 

  35. Wu, K.; Li, Z.; Tang, J. B.; Lv, X. L.; Wang, H. L.; Luo, R. C.; Liu, P.; Qian, L. H.; Zhang, S. P.; Yuan, S. L. Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res. 2018, 11, 4123–4132.

    Article  CAS  Google Scholar 

  36. Zhou, Y. Z.; Kiriya, D.; Haller, E. E.; Ager III, J. W.; Javey, A.; Chrzan, D. C. Compliant substrate epitaxy: Au on MoS2. Phys. Rev. B 2016, 93, 054106.

    Article  Google Scholar 

  37. Li, Z. W.; Xiao, Y. D.; Gong, Y. J.; Wang, Z. P.; Kang, Y. M.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z. Y. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9, 10158–10164.

    Article  CAS  Google Scholar 

  38. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  Google Scholar 

  39. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

    Article  CAS  Google Scholar 

  40. Sreeprasad, T. S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434–4441.

    Article  CAS  Google Scholar 

  41. Bang, S.; Duong, N. T.; Lee, J.; Cho, Y. H.; Oh, H. M.; Kim, H.; Yun, S. J.; Park, C.; Kwon, M. K.; Kim, J. Y. et al. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling. Nano Lett. 2018, 18, 2316–2323.

    Article  CAS  Google Scholar 

  42. Lu, X.; Utama, M. I. B.; Lin, J.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419–2425.

    Article  CAS  Google Scholar 

  43. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  44. Island, J. O.; Blanter, S. I.; Buscema, M.; van der Zant, H. S.; Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 2015, 15, 7853–7858.

    Article  CAS  Google Scholar 

  45. Wu, H. L.; Kang, Z.; Zhang, Z. H.; Zhang, Z.; Si, H. N.; Liao, Q. L.; Zhang, S. C.; Wu, J.; Zhang, X. K.; Zhang, Y. Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D-2D mixed-dimensional van der Waals heterostructures. Adv. Funct. Mater. 2018, 28, 1802015.

    Article  Google Scholar 

  46. Lv, Z. Y.; Chen, M.; Qian, F. S.; Roy, V. A. L.; Ye, W. B.; She, D. H.; Wang, Y.; Xu, Z. X.; Zhou, Y.; Han, S. T. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 2019, 29, 1902374.

    Article  Google Scholar 

  47. Ahmed, T.; Kuriakose, S.; Mayes, E. L. H.; Ramanathan, R.; Bansal, V.; Bhaskaran, M.; Sriram, S.; Walia, S. Optically stimulated artificial synapse based on layered black phosphorus. Small 2019, 15, 1900966.

    Article  Google Scholar 

  48. Liu, Y. H.; Zhu, L. Q.; Feng, P.; Shi, Y.; Wan, Q. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv. Mater. 2015, 27, 5599–5604.

    Article  CAS  Google Scholar 

  49. Wixted, J. T.; Carpenter, S. K. The wickelgren power law and the ebbinghaus savings function. Psychol. Sci. 2007, 18, 133–134.

    Article  Google Scholar 

  50. Yang, C. D.; Qian, J.; Jiang, S.; Wang, H. Y.; Wang, Q. J.; Wan, Q.; Chan, P. K. L.; Shi, Y.; Li, Y. An optically modulated organic schottky-barrier planar-diode-based artificial synapse. Adv. Opt. Mater. 2020, 8, 2000153.

    Article  CAS  Google Scholar 

  51. Li, Y.; DiStefano, J. G.; Murthy, A. A.; Cain, J. D.; Hanson, E. D.; Li, Q. Q.; Castro, F. C.; Chen, X. Q.; Dravid, V. P. Superior plasmonic photodetectors based on Au@MoS2 core-shell heterostructures. ACS Nano 2017, 11, 10321–10329.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Feng Lin for his efforts on FDTD simulations. This work is supported by the National Natural Science Foundation of China (Nos. 92163135, 11904098, 51972105, U19A2090, and 62090035), Hunan Provincial Natural Science Foundation of China (No. 2019JJ30004), Key Program of the Hunan Provincial Science and Technology Department (Nos. 2019XK2001 and 2020XK2001). This work is also supported by State Key Laboratory of Artificial Microstructure & Mesoscopic Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziwei Li or Anlian Pan.

Electronic Supplementary Material

12274_2021_3875_MOESM1_ESM.pdf

Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Xie, Y., Li, Z. et al. Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res. 15, 3539–3547 (2022). https://doi.org/10.1007/s12274-021-3875-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3875-0

Keywords

Navigation