Skip to main content
Log in

Metaln+-Metalδ+ pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The major obstacle for selective CO2 photoreduction to C2 hydrocarbons lies in the difficulty of C-C coupling, which is usually restrained by the repulsive dipole-dipole interaction between adjacent carbonaceous intermediates. Herein, we first construct semiconducting atomic layers featuring abundant Metaln+-Metalδ+ pair sites (0 < δ < n), aiming to tailor asymmetric charge distribution on the carbonaceous intermediates and hence trigger their C-C coupling for selectively yielding C2 hydrocarbons. As an example, we first fabricate Co-doped NiS2 atomic layers possessing abundant Ni2+-Niδ+ (0 < δ < 2) pairs, where Co doping strategy can ensure higher amount of Ni2+-Niδ+ pair sites. In-situ Fourier-transform infrared spectroscopy, quasi in-situ Raman spectroscopy and density-functional-theory calculations disclose the Ni2+-Niδ+ pair sites endow the adjacent CO intermediates with distinct charge densities, thus decreasing their dipole-dipole repulsion and hence lowering the rate-limiting C-C coupling reaction barrier. As a result, in simulated flue gas (10% CO2 balance 90% N2), the ethylene selectivity for Co-doped NiS2 atomic layers reaches up to 74.3% with an activity of 70 µg·g−1·h−1, outperforming previously reported photocatalysts under similar operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, inpress.

  2. Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.

    Article  Google Scholar 

  3. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Van De Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it?. Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  4. Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

    Article  CAS  Google Scholar 

  5. Kim, D.; Sakimoto, K. K.; Hong, D. C.; Yang, P. D. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem., Int. Ed. 2015, 54, 3259–3266.

    Article  CAS  Google Scholar 

  6. Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

    Article  CAS  Google Scholar 

  7. Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

    Article  CAS  Google Scholar 

  8. Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

    Article  CAS  Google Scholar 

  9. Nahar, S.; Zain, M. F. M.; Kadhum, A. A. H.; Hasan, H. A.; Hasan, M. R. Advances in photocatalytic CO2 reduction with water: A review. Materials 2017, 10, 629.

    Article  Google Scholar 

  10. Dai, S. Y.; Chen, C. L. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. 2016, 128, 13475–13479.

    Article  Google Scholar 

  11. Li, J.; Wang, Z. Y.; McCallum, C.; Xu, Y.; Li, F. W.; Wang, Y. H.; Gabardo, C. M.; Dinh, C. T.; Zhuang, T. T.; Wang, L. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2019, 2, 1124–1131.

    Article  CAS  Google Scholar 

  12. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, eaav3506.

    Article  CAS  Google Scholar 

  13. Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal. 2018, 8, 1490–1499.

    Article  CAS  Google Scholar 

  14. Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.

    Article  CAS  Google Scholar 

  15. An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

    Article  CAS  Google Scholar 

  16. Wang, X.; Wang, Z. Y.; Zhuang, T. T.; Dinh, C. T.; Li, J.; Nam, D. H.; Li, F. W.; Huang, C. W.; Tan, C. S.; Chen, Z. T. et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat. Commun. 2019, 10, 5186.

    Article  Google Scholar 

  17. Rahman, M. M.; Ahmed, J.; Asiri, A. M.; Siddiquey, I. A.; Hasnat, M. A. Development of 4-methoxyphenol chemical sensor based on NiS2-CNT nanocomposites. J. Taiwan Inst. Chem. Eng. 2016, 64, 157–165.

    Article  CAS  Google Scholar 

  18. Ni, W. Y.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schüler, A.; Hu, X. L. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem., Int. Ed. 2019, 58, 7445–7449.

    Article  CAS  Google Scholar 

  19. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    Article  CAS  Google Scholar 

  20. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  21. Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  CAS  Google Scholar 

  22. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  23. Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.

    Article  CAS  Google Scholar 

  24. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  CAS  Google Scholar 

  25. Shek, C. H.; Lai, J. K. L.; Lin, G. M. Investigation of interface defects in nanocrystalline SnO2 by positron annihilation. J. Phys. Chem. Solids 1999, 60, 189–193.

    Article  CAS  Google Scholar 

  26. Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

    Article  CAS  Google Scholar 

  27. De Las Heras, C.; Agulló-Rueda, F. Raman spectroscopy of NiSe2 and NiS2−xSex (0<x< 2) thin films. J. Phys.: Condens. Matter 2000, 12, 5317–5324.

    CAS  Google Scholar 

  28. Zhang, J.; An, Z.; Zhu, Y. R.; Shu, X.; Song, H. Y.; Jiang, Y. T.; Wang, W. L.; Xiang, X.; Xu, L. L.; He, J. Ni0/Niδ+ synergistic catalysis on a nanosized Ni surface for simultaneous formation of C-C and C-N bonds. ACS Catal. 2019, 9, 11438–11446.

    Article  CAS  Google Scholar 

  29. Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

    Article  CAS  Google Scholar 

  30. Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

    Article  CAS  Google Scholar 

  31. Wang, M.; Zhang, W. J.; Zhang, F. F.; Zhang, Z. H.; Tang, B.; Li, J. P.; Wang, X. G. Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 2019, 9, 1489–1502.

    Article  CAS  Google Scholar 

  32. Ishiguro, S.; Ozutsumi, K. Thermodynamics and structure of isothiocyanato complexes of manganese (II), cobalt (II), and nickel (II) ions in N, N-dimethylformamide. Inorg. Chem. 1990, 29, 1117–1123.

    Article  CAS  Google Scholar 

  33. Wang, Y.; Zhao, J.; Wang, T. F.; Li, Y. X.; Li, X. Y.; Yin, J.; Wang, C. Y. CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. J. Catal. 2016, 337, 293–302.

    Article  CAS  Google Scholar 

  34. Wu, J. C. S.; Huang, C. W. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China 2010, 4, 120–126.

    Article  CAS  Google Scholar 

  35. Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

    Article  CAS  Google Scholar 

  36. Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.

    Article  CAS  Google Scholar 

  37. Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. 2017, 129, 3675–3678.

    Article  Google Scholar 

  38. Chung, C.; Lee, M.; Choe, E. K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 2004, 58, 417–420.

    Article  CAS  Google Scholar 

  39. El-Hendawy, A. N. A. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J. Anal. Appl. Pyrolysis 2006, 75, 159–166.

    Article  CAS  Google Scholar 

  40. Xiao, H.; Cheng, T.; Goddard III, W. A.; Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 2016, 138, 483–486.

    Article  CAS  Google Scholar 

  41. Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

    Article  CAS  Google Scholar 

  42. Schmitt, K. G.; Gewirth, A. A. In situ surface-enhanced Raman spectroscopy of the electrochemical reduction of carbon dioxide on silver with 3,5-diamino-1,2,4-triazole. J. Phys. Chem. C 2014, 118, 17567–17576.

    Article  CAS  Google Scholar 

  43. Yang, H.; Hu, Y. W.; Chen, J. J.; Balogun, M. S.; Fang, P. P.; Zhang, S. Q.; Chen, J.; Tong, Y. X. Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 2019, 9, 1901396.

    Article  Google Scholar 

  44. Klingan, K.; Kottakkat, T.; Jovanov, Z. P.; Jiang, S.; Pasquini, C.; Scholten, F.; Kubella, P.; Bergmann, A.; Cuenya, B. R.; Roth, C. et al. Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. ChemSusChem 2018, 11, 3449–3459.

    Article  CAS  Google Scholar 

  45. Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. USA 2018, 115, E9261–E9270.

    Article  CAS  Google Scholar 

  46. Mbonyiryivuze, A.; Omollo, I.; Ngom, B. D.; Mwakikunga, B.; Dhlamini, S. M.; Park, E.; Maaza, M. Natural dye sensitizer for Grätzel cells: Sepia melanin. Phys. Mater. Chem. 2015, 3, 1–6.

    CAS  Google Scholar 

  47. Ho, M.; Pemberton, J. E. Alkyl chain conformation of octadecylsilane stationary phases by Raman spectroscopy. 1. Temperature dependence. Anal. Chem. 1998, 70, 4915–4920.

    Article  CAS  Google Scholar 

  48. Baranowska-Korczyc, A.; Warowicka, A.; Jasiurkowska-Delaporte, M.; Grześkowiak, B.; Jarek, M.; Maciejewska, B. M.; Jurga-Stopa, J.; Jurga, S. Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Adv. 2016, 6, 19647–19656.

    Article  CAS  Google Scholar 

  49. Panicker, C. Y.; Varghese, H. T.; Philip, D. FT-IR, FT-Raman and SERS spectra of Vitamin C. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2006, 65, 802–804.

    Article  Google Scholar 

  50. Jones, A. G.; Powell, D. B. Low-frequency vibrational spectra of triphenylphosphine and triphenylarsine complexes of d10 gold(1) and Ni(0). Spectrochim. Acta A: Mol. Spectrosc. 1974, 30, 563–570.

    Article  Google Scholar 

  51. Krasser, W.; Renouprez, A. J. Raman scattering of hydrogen chemisorbed on silica-supported nickel. J. Raman Spectrosc. 1979, 8, 92–94.

    Article  CAS  Google Scholar 

  52. Dokko, K.; Mohamedi, M.; Anzue, N.; Itoh, T.; Uchida, I. In situ Raman spectroscopic studies of LiNixMn2−xO4 thin film cathode materials for lithium ion secondary batteries. J. Mater. Chem. 2002, 12, 3688–3693.

    Article  CAS  Google Scholar 

  53. Bickley, R. I.; Edwards, H. G. M.; Gustar, R.; Rose, S. J. Synthesis and vibrational spectroscopic characterisation of nickel (II) propionate tetrahydrate, Ni(CH3CH2COO)24H2O, and its aqueous solution. J. Mol. Struct. 1991, 248, 237–250.

    Article  CAS  Google Scholar 

  54. Marzouk, H. A.; Bradley, E. B. Normal unenhanced Raman spectra of 13CO adsorbed on Ni(111): A comparison study. Spectrosc. Lett. 1985, 18, 791–814.

    Article  CAS  Google Scholar 

  55. Chang, C. C.; Li, E. Y.; Tsai, M. K. A computational exploration of CO2 reduction via CO dimerization on mixed-valence copper oxide surface. Phys. Chem. Chem. Phys. 2018, 20, 16906–16909.

    Article  CAS  Google Scholar 

  56. Li, G. N.; Wang, B.; Resasco, D. E. Water-mediated heterogeneously catalyzed reactions. ACS Catal. 2020, 10, 1294–1309.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (Nos. 2019YFA0210004 and 2017YFA0207301), National Natural Science Foundation of China (Nos. 21975242, U2032212, 21890754, and 21805267), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), Youth Innovation Promotion Association of CAS (No. CX2340007003), Major Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2020HSC-CIP003), Key Research Program of Frontier Sciences of CAS (No. QYZDY-SSW-SLH011), the Fok Ying-Tong Education Foundation (No. 161012). Supercomputing USTC and National Supercomputing Center in Shenzhen are acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, W., Li, X., Zhu, J. et al. Metaln+-Metalδ+ pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons. Nano Res. 15, 1882–1891 (2022). https://doi.org/10.1007/s12274-021-3789-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3789-x

Keywords

Navigation