Skip to main content
Log in

Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites

  • Flagship Review
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalysis, via conversion of light into valuable chemicals, is an economic and effective way to utilize inexhaustible solar energy for the sustainable development of our human society. Aiming at killing two birds with one stone, metal nanoparticle (MNP)/metal-organic framework (MOF) composites via integration of the individual advantages of MNP and MOF have been becoming a versatile photocatalyst. Moreover, owing to the synergist effect between each component, MNP/MOF composite photocatalysts usually show greatly promoted catalytic activity, selectivity and long-term recyclability. In this review, first of all, the widely adopted synthesis strategies of MNP/MOF composite are introduced comprehensively, and then their recent advances in photocatalysis including photocatalytic hydrogen production, carbon dioxide reduction, organic transformation reactions and photodegradation of pollutants are summarized and highlighted. Finally, challenges and perspectives among MNP/MOF based photocatalysis are also proposed and discussed for advancing further development in this hot research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    CAS  Google Scholar 

  2. Ong, C. B.; Ng, L. Y.; Mohammad, A. W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sust. Energ. Rev. 2018, 81, 536–551.

    CAS  Google Scholar 

  3. Ma, R.; Zhang, S.; Wen, T.; Gu, P. C.; Li, L.; Zhao, G. X.; Niu, F. L.; Huang, Q. F.; Tang, Z. W.; Wang, X. K. A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal. Today 2019, 335, 20–30.

    CAS  Google Scholar 

  4. Lee, G. J.; Wu, J. J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 2017, 318, 8–22.

    CAS  Google Scholar 

  5. Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

    CAS  Google Scholar 

  6. Wen, J. Q.; Xie, J.; Chen, X. B; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123.

    CAS  Google Scholar 

  7. Mishra, M.; Chun, D. M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A: General 2015, 498, 126–141.

    CAS  Google Scholar 

  8. Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

    CAS  Google Scholar 

  9. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  10. Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    CAS  Google Scholar 

  11. Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. 2006, 45, 1557–1559.

    CAS  Google Scholar 

  12. Lin, Z. J.; Lü, J.; Hong, M.; Cao, R. Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications. Chem. Soc. Rev. 2014, 43, 5867–5895.

    CAS  Google Scholar 

  13. Pang, Q. Q.; Tu, B. B.; Li, Q. W. Metal-organic frameworks with multicomponents in order. Coord. Chem. Rev. 2019, 388, 107–125.

    CAS  Google Scholar 

  14. Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

    CAS  Google Scholar 

  15. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Google Scholar 

  16. Liu, S. J.; Zhang, C.; Sun, Y. D.; Chen, Q.; He, L. F.; Zhang, K.; Zhang, J.; Liu, B.; Chen, L. F. Design of metal-organic framework-based photocatalysts for hydrogen generation. Coord. Chem. Rev. 2020, 413, 213266.

    CAS  Google Scholar 

  17. Chen, L. Y.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57–89.

    Google Scholar 

  18. Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catal. Today 2020, 340, 209–224.

    CAS  Google Scholar 

  19. Li, D. D.; Kassymova, M.; Cai, X. C.; Zang, S. Q.; Jiang, H. L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 2020, 412, 213262.

    CAS  Google Scholar 

  20. Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Y. W.; Xiao, J.; Li, Z. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J. 2018, 337, 351–371.

    CAS  Google Scholar 

  21. Cao, M.; Pang, R.; Wang, Q. Y.; Han, Z.; Wang, Z. Y.; Dong, X. Y.; Li, S. F.; Zang, S. Q.; Mak, T. C. W. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant. J. Am. Chem. Soc. 2019, 141, 14505–14509.

    CAS  Google Scholar 

  22. Wang, Q.; Gao, Q. Y.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339.

    CAS  Google Scholar 

  23. Subudhi, S.; Rath, D.; Parida, K. M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol. 2018, 8, 679–696.

    CAS  Google Scholar 

  24. Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    CAS  Google Scholar 

  25. Wang, J. L.; Wang, C.; Lin, W. B. Metal-organic frameworks for light harvesting and photocatalysis. ACS Catal. 2012, 2, 2630–2640.

    CAS  Google Scholar 

  26. Wang, M. M.; Wang, P.; Li, C. P.; Li, H. J.; Jin, Y. D. Boosting electrocatalytic oxygen evolution performance of ultrathin Co/Ni-MOF nanosheets via plasmon-induced hot carriers. ACS Appl. Mater. Interfaces 2018, 10, 37095–37102.

    CAS  Google Scholar 

  27. Vaddipalli, S. R.; Sanivarapu, S. R.; Vengatesan, S.; Lawrence, J. B.; Eashwar, M.; Sreedhar, G. Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting: stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl. Mater. Interfaces 2016, 8, 23049–23059.

    CAS  Google Scholar 

  28. Becerra, J.; Nguyen, D. T.; Gopalakrishnan, V. N.; Do, T. O. Plasmonic Au nanoparticles incorporated in the zeolitic imidazolate framework (ZIF-67) for the efficient sunlight-driven photoreduction of CO2. ACS Appl. Energy Mater. 2020, 3, 7659–7665.

    CAS  Google Scholar 

  29. Deng, X.; Yang, L. L.; Huang, H. L.; Yang, Y. Y.; Feng, S. Q.; Zeng, M.; Li, Q.; Xu, D. S. Shape-defined hollow structural Co-MOF-74 and metal nanoparticles@Co-MOF-74 composite through a transformation strategy for enhanced photocatalysis performance. Small 2019, 15, 1902287.

    Google Scholar 

  30. Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362.

    CAS  Google Scholar 

  31. Robatjazi, H.; Weinberg, D.; Swearer, D. F.; Jacobson, C.; Zhang, M.; Tian, S.; Zhou, L. N.; Nordlander, P.; Halas, N. J. Metal-organic frameworks tailor the properties of aluminum nanocrystals. Sci. Adv. 2019, 5, eaav5340.

    CAS  Google Scholar 

  32. Guo, F.; Wei, Y. P.; Wang, S. Q.; Zhang, X. Y.; Wang, F. M.; Sun, W. Y. Pt nanoparticles embedded in flowerlike NH2-UiO-68 for enhanced photocatalytic carbon dioxide reduction. J. Mater. Chem. A 2019, 7, 26490–26495.

    CAS  Google Scholar 

  33. Wang, C.; deKrafft, K. E.; Lin, W. B. Pt Nanoparticles@photoactive metal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211–7214.

    CAS  Google Scholar 

  34. Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 55, 9389–9393.

    CAS  Google Scholar 

  35. Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78.

    CAS  Google Scholar 

  36. Sun, D. R.; Li, Z. H. Double-solvent method to pd nanoclusters encapsulated inside the cavity of NH2-Uio-66(Zr) for efficient visible-light-promoted suzuki coupling reaction. J. Phys. Chem. C 2016, 120, 19744–19750.

    CAS  Google Scholar 

  37. Sun, D. R.; Xu, M. P.; Jiang, Y. T.; Long, J. L.; Li, Z. H. Small-sized bimetallic CuPd nanoclusters encapsulated inside cavity of NH2-UiO-66(Zr) with superior performance for light-induced Suzuki coupling reaction. Small Methods 2018, 2, 1800164.

    Google Scholar 

  38. Wang, D. K.; Pan, Y. T.; Xu, L. Z.; Li, Z. H. PdAu@MIL-100(Fe) cooperatively catalyze tandem reactions between amines and alcohols for efficient N-alkyl amines syntheses under visible light. J. Catal. 2018, 361, 248–254.

    CAS  Google Scholar 

  39. Long, J. L.; Liu, H. L.; Wu, S. J.; Liao, S. J.; Li, Y. W. Selective oxidation of saturated hydrocarbons using Au-Pd alloy nanoparticles supported on metal-organic frameworks. ACS Catal. 2013, 3, 647–654.

    CAS  Google Scholar 

  40. Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645–7649.

    CAS  Google Scholar 

  41. Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979–5983.

    Google Scholar 

  42. Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Appl. Catal. A 2003, 247, 309–320.

    CAS  Google Scholar 

  43. Sabo, M.; Henschel, A.; Fröde, H.; Klemm, E.; Kaskel, S. Solution infiltration of palladium into MOF-5: Synthesis, physisorption and catalytic properties. J. Mater. Chem. 2007, 17, 3827–3832.

    CAS  Google Scholar 

  44. Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. 2008, 120, 4212–4216.

    Google Scholar 

  45. Huang, Y. B.; Lin, Z. J.; Cao, R. Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Chem.—Eur. J. 2011, 17, 12706–12712.

    CAS  Google Scholar 

  46. Juan-Alcañiz, J.; Ferrando-Soria, J.; Luz, I.; Serra-Crespo, P.; Skupien, E.; Santos, V. P.; Pardo, E.; Llabrés i Xamena, F. X.; Kapteijn, F.; Gascon, J. The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au. J. Catal. 2013, 307, 295–304.

    Google Scholar 

  47. Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340–1348.

    CAS  Google Scholar 

  48. Zhang, F. M.; Jin, Y.; Fu, Y. H.; Zhong, Y. J.; Zhu, W. D.; Ibrahim, A. A.; El-Shall, M. S. Palladium nanoparticles incorporated within sulfonic acid-functionalized MIL-101(Cr) for efficient catalytic conversion of vanillin. J. Mater. Chem. A 2015, 3, 17008–17015.

    CAS  Google Scholar 

  49. Chen, M. M.; Han, L.; Zhou, J.; Sun, C. Y.; Hu, C. Y.; Wang, X. L.; Su, Z. M. Photoreduction of carbon dioxide under visible light by ultra-small Ag nanoparticles doped into Co-ZIF-9. Nanotechnology 2018, 29, 284003.

    Google Scholar 

  50. Liu, X. H.; Ma, J. G.; Niu, Z.; Yang, G. M.; Cheng, P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew. Chem., Int. Ed. 2015, 54, 988–991.

    CAS  Google Scholar 

  51. Jiang, H. L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.

    CAS  Google Scholar 

  52. Gu, X. J.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822–11825.

    CAS  Google Scholar 

  53. Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

    CAS  Google Scholar 

  54. Liu, J. W.; Fan, Y. Z.; Zhang, K.; Zhang, L.; Su, C. Y. Engineering porphyrin metal-organic framework composites as multifunctional platforms for CO2 adsorption and activation. J. Am. Chem. Soc. 2020, 142, 14548–14556.

    CAS  Google Scholar 

  55. Liu, Y.; Jia, S. Y.; Wu, S. H.; Li, P. L.; Liu, C. J.; Xu, Y. M.; Qin, F. X. Synthesis of highly dispersed metallic nanoparticles inside the pores of MIL-101(Cr) via the new double solvent method. Catal. Commun. 2015, 70, 44–48.

    CAS  Google Scholar 

  56. Chen, W. J.; Cheng, B. H.; Sun, Q. T.; Jiang, H. Preparation of MOF confined Ag nanoparticles for the highly active, size selective hydrogenation of olefins. ChemCatChem 2018, 10, 3659–3665.

    CAS  Google Scholar 

  57. Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc. 2013, 135, 10210–10213.

    CAS  Google Scholar 

  58. Li, J.; Zhu, Q. L.; Xu, Q. Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chem. Commun. 2014, 50, 5899–5901.

    CAS  Google Scholar 

  59. Huang, Y. B.; Zhang, Y. H.; Chen, X. X.; Wu, D. S.; Yi, Z. G.; Cao, R. Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chem. Commun. 2014, 50, 10115–10117.

    CAS  Google Scholar 

  60. Chen, Y. Z.; Xu, Q.; Yu, S. H.; Jiang, H. L. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 2015, 11, 71–76.

    CAS  Google Scholar 

  61. Sun, J. L.; Chen, Y. Z.; Ge, B. D.; Li, J. H.; Wang, G. M. Three-shell Cu@Co@Ni nanoparticles stabilized with a metal-organic framework for enhanced tandem catalysis. ACS Appl. Mater. Interfaces 2019, 11, 940–947.

    CAS  Google Scholar 

  62. Hermes, S.; Schröter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem., Int. Ed. 2005, 44, 6237–6241.

    CAS  Google Scholar 

  63. Zahmakiran, M. Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): Synthesis, structural properties and catalytic performance. Dalton Trans. 2012, 41, 12690–12696.

    CAS  Google Scholar 

  64. Hermannsdörfer, J.; Friedrich, M.; Miyajima, N.; Albuquerque, R. Q.; Kümmel, S.; Kempe, R. Ni/Pd@MIL-101: Synergistic catalysis with cavity-conform Ni/Pd nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 11473–11477.

    Google Scholar 

  65. Müller, M.; Lebedev, O. I.; Fischer, R. A. Gas-phase loading of [Zn4O(btb)2] (MOF-177) with organometallic CVD-precursors: Inclusion compounds of the type [LnM]a@MOF-177 and the formation of Cu and Pd nanoparticles inside MOF-177. J. Mater. Chem. 2008, 18, 5274–5281.

    Google Scholar 

  66. Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem. Eur. J. 2008, 14, 8456–8460.

    CAS  Google Scholar 

  67. Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.

    CAS  Google Scholar 

  68. Jiang, H. L.; Lin, Q. P.; Akita, T.; Liu, B.; Ohashi, H.; Oji, H.; Honma, T.; Takei, T.; Haruta, M.; Xu, Q. Ultrafine gold clusters incorporated into a metal-organic framework. Chem.—Eur. J. 2011, 17, 78–81.

    CAS  Google Scholar 

  69. Mukoyoshi, M.; Kobayashi, H.; Kusada, K.; Hayashi, M.; Yamada, T.; Maesato, M.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M. et al. Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chem. Commun. 2015, 51, 12463–12466.

    CAS  Google Scholar 

  70. Li, G. Q.; Kobayashi, H.; Kusada, K.; Taylor, J. M.; Kubota, Y.; Kato, K.; Takata, M.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. An ordered bcc CuPd nanoalloy synthesised via the thermal decomposition of Pd nanoparticles covered with a metal-organic framework under hydrogen gas. Chem. Commun. 2014, 50, 13750–13753.

    CAS  Google Scholar 

  71. Choi, S.; Oh, M. Well-arranged and confined incorporation of PdCo nanoparticles within a hollow and porous metal-organic framework for superior catalytic activity. Angew. Chem., Int. Ed. 2019, 58, 866–871.

    CAS  Google Scholar 

  72. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. 2013, 125, 3829–3833.

    Google Scholar 

  73. Chen, L. Y.; Chen, X. D.; Liu, H. L.; Bai, C. H.; Li, Y. W. One-step encapsulation of Pd nanoparticles in MOFs via a temperature control program. J. Mater. Chem. A 2015, 3, 15259–15264.

    CAS  Google Scholar 

  74. Ke, F.; Wang, L. H.; Zhu, J. F. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid. Nanoscale 2015, 7, 8321–8325.

    CAS  Google Scholar 

  75. Kobayashi, H.; Mitsuka, Y.; Kitagawa, H. Metal nanoparticles covered with a metal-organic framework: From one-pot synthetic methods to synergistic energy storage and conversion functions. Inorg. Chem. 2016, 55, 7301–7310.

    CAS  Google Scholar 

  76. Liu, H. L.; Chang, L. N.; Bai, C. H.; Chen, L. Y.; Luque, R.; Li, Y. W. Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem. 2016, 128, 5103–5107.

    Google Scholar 

  77. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    CAS  Google Scholar 

  78. Su, Y. Q.; Xu, H. T.; Wang, J. J.; Luo, X. K.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO. Nano Res. 2019, 12, 625–630.

    CAS  Google Scholar 

  79. Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium Nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.

    CAS  Google Scholar 

  80. Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018, 11, 3294–3305.

    CAS  Google Scholar 

  81. Chen, L. Y.; Peng, Y.; Wang, H.; Gu, Z. Z.; Duan, C. Y. Synthesis of Au@ZIF-8 single- or multi-core-shell structures for photocatalysis. Chem. Commun. 2014, 50, 8651–8654.

    CAS  Google Scholar 

  82. Hu, P.; Zhuang, J.; Chou, L. Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y. C.; Tsung, C. K. Surfactant-directed atomic to mesoscale alignment: Metal nanocrystals encased individually in single-crystalline porous nanostructures. J. Am. Chem. Soc. 2014, 136, 10561–10564.

    CAS  Google Scholar 

  83. Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.

    CAS  Google Scholar 

  84. Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal-organic frameworks embedding gold nanorods. Chem. Mater. 2011, 23, 3132–3134.

    CAS  Google Scholar 

  85. Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. Versatile core-shell nanoparticle@metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951–6960.

    CAS  Google Scholar 

  86. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

    CAS  Google Scholar 

  87. Xu, Z. L.; Zhang, W. N.; Weng, J. N.; Huang, W.; Tian, D. B.; Huo, F. W. Encapsulation of metal layers within metal-organic frameworks as hybrid thin films for selective catalysis. Nano Res. 2016, 9, 158–164.

    CAS  Google Scholar 

  88. Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

    CAS  Google Scholar 

  89. Liu, H. L.; Chang, L. N.; Chen, L. Y.; Li, Y. W. Nanocomposites of platinum/metal-organic frameworks coated with metal-organic frameworks with remarkably enhanced chemoselectivity for cinnamaldehyde hydrogenation. ChemCatChem 2016, 8, 946–951.

    CAS  Google Scholar 

  90. Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

    CAS  Google Scholar 

  91. Xu, H. T.; Luo, X. K.; Wang, J. J.; Su, Y. Q.; Zhao, X.; Li, Y. S. Spherical sandwich Au@Pd@UIO-67/Pt@UIO-n (n = 66, 67, 69) core-shell catalysts: Zr-based metal-organic frameworks for effectively regulating the reverse water-gas shift reaction. ACS Appl. Mater. Interfaces 2019, 11, 20291–20297.

    CAS  Google Scholar 

  92. Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

    CAS  Google Scholar 

  93. Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.

    CAS  Google Scholar 

  94. Guo, F.; Guo, J. H.; Wang, P.; Kang, Y. S.; Liu, Y.; Zhao, J.; Sun, W. Y. Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci. 2019, 10, 4834–4838.

    CAS  Google Scholar 

  95. Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem. 2019, 131, 12303–12307.

    Google Scholar 

  96. Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583–4590.

    CAS  Google Scholar 

  97. Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

    Google Scholar 

  98. Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. 2019, 131, 10304–10309.

    Google Scholar 

  99. Lee, D. T.; Jamir, J. D.; Peterson, G. W.; Parsons, G. N. Protective fabrics: Metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification. Matter 2020, 2, 404–415.

    Google Scholar 

  100. Song, Y.; Li, Z.; Zhu, Y. Y.; Feng, X. Y.; Chen, J. S.; Kaufmann, M.; Wang, C.; Lin, W. B. Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light. J. Am. Chem. Soc. 2019, 141, 12219–12223.

    CAS  Google Scholar 

  101. Wang, C.; Xie, Z. G.; deKrafft, K. E.; Lin, W. B. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445–13454.

    CAS  Google Scholar 

  102. Dong, X. Y.; Zhang, M.; Pei, R. B.; Wang, Q.; Wei, D. H.; Zang, S. Q.; Fan, Y. T.; Mak, T. C. W. A crystalline copper (II) coordination polymer for the efficient visible-light-driven generation of hydrogen. Angew. Chem. 2016, 128, 2113–2117.

    Google Scholar 

  103. Nasalevich, M. A.; Hendon, C. H.; Santaclara, J. G.; Svane, K.; van der Linden, B.; Veber, S. L.; Fedin, M. V.; Houtepen, A. J.; van der Veen, M. A.; Kapteijn, F. et al. Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 2016, 6, 23676.

    CAS  Google Scholar 

  104. de Miguel, M.; Ragon, F.; Devic, T.; Serre, C.; Horcajada, P.; García, H. Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. ChemPhysChem 2012, 13, 3651–3654.

    CAS  Google Scholar 

  105. Wen, M. C.; Mori, K.; Kuwahara, Y.; An, T. C.; Yamashita, H. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl. Catal. B: Environ. 2017, 218, 555–569.

    CAS  Google Scholar 

  106. Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem., Int. Ed. 2012, 51, 7440–7444.

    CAS  Google Scholar 

  107. Wen, M. C.; Mori, K.; Kamegawa, T.; Yamashita, H. Amine-functionalized MIL-101(Cr) with imbedded platinum nanoparticles as a durable photocatalyst for hydrogen production from water. Chem. Commun. 2014, 50, 11645–11648.

    CAS  Google Scholar 

  108. Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

    CAS  Google Scholar 

  109. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    CAS  Google Scholar 

  110. Shen, L. J.; Luo, M. B.; Huang, L. J.; Feng, P. Y.; Wu, L. A clean and general strategy to decorate a titanium metal-organic framework with noble-metal nanoparticles for versatile photocatalytic applications. Inorg. Chem. 2015, 54, 1191–1193.

    CAS  Google Scholar 

  111. Jin, Z. L.; Yang, H. Exploration of Zr-metal-organic framework as efficient photocatalyst for hydrogen production. Nanoscale Res. Lett. 2017, 12, 539.

    Google Scholar 

  112. Wen, M. C.; Kuwahara, Y.; Mori, K.; Zhang, D. P.; Li, H. X.; Yamashita, H. Synthesis of Ce ions doped metal-organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation. J. Mater. Chem. A 2015, 3, 14134–14141.

    CAS  Google Scholar 

  113. Cure, J.; Mattson, E.; Cocq, K.; Assi, H.; Jensen, S.; Tan, K.; Catalano, M.; Yuan, S.; Wang, H.; Feng, L. et al. High stability of ultra-small and isolated gold nanoparticles in metal-organic framework materials. J. Mater. Chem. A 2019, 7, 17536–17546.

    CAS  Google Scholar 

  114. Mao, S. M.; Shi, J. W.; Sun, G. T.; Ma, D. D.; He, C.; Pu, Z. X.; Song, K. L.; Cheng, Y. H. Au nanodots@thiol-UiO66@ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs. Appl. Catal. B: Environ. 2021, 282, 119550.

    CAS  Google Scholar 

  115. Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

    CAS  Google Scholar 

  116. Lan, G. X.; Li, Z.; Veroneau, S. S.; Zhu, Y. Y.; Xu, Z. W.; Wang, C.; Lin, W. B. Photosensitizing metal-organic layers for efficient sunlight-driven carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 12369–12373.

    CAS  Google Scholar 

  117. Zeng, L. Z.; Wang, Z. Y.; Wang, Y. K.; Wang, J.; Guo, Y.; Hu, H. H.; He, X. F.; Wang, C.; Lin, W. B. Photoactivation of Cu centers in metal-organic frameworks for selective CO2 conversion to ethanol. J. Am. Chem. Soc. 2020, 142, 75–79.

    CAS  Google Scholar 

  118. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    CAS  Google Scholar 

  119. Chen, L. Y.; Wang, Y. X.; Yu, F. Y.; Shen, X. S.; Duan, C. Y. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal-organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J. Mater. Chem. A 2019, 7, 11355–11361.

    CAS  Google Scholar 

  120. Sun, D. R.; Liu, W. J.; Fu, Y. H.; Fang, Z. X.; Sun, F. X.; Fu, X. Z.; Zhang, Y. F.; Li, Z. H. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M = Pt and Au). Chem.—Eur. J. 2014, 20, 4780–4788.

    CAS  Google Scholar 

  121. Guo, F.; Yang, S. Z.; Liu, Y.; Wang, P.; Huang, J. E.; Sun, W. Y. Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction. ACS Catal. 2019, 9, 8464–8470.

    CAS  Google Scholar 

  122. Fu, Y. H.; Sun, L.; Yang, H.; Xu, L.; Zhang, F. M.; Zhu, W. D. Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti). Appl. Catal. B: Environ. 2016, 187, 212–217.

    CAS  Google Scholar 

  123. Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035–2044.

    CAS  Google Scholar 

  124. Qiu, J. H.; Yang, L. Y.; Li, M.; Yao, J. F. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis. Mater. Res. Bull. 2019, 112, 297–306.

    CAS  Google Scholar 

  125. Qiu, J. H.; Zhang, X. G.; Xie, K. L.; Zhang, X. F.; Feng, Y.; Jia, M. M.; Yao, J. F. Noble metal nanoparticle-functionalized Zr-metal organic frameworks with excellent photocatalytic performance. J. Colloid Interface Sci. 2019, 538, 569–577.

    CAS  Google Scholar 

  126. Gu, Z. Z.; Chen, L. Y.; Duan, B. H.; Luo, Q.; Liu, J.; Duan, C. Y. Synthesis of Au@UiO-66(NH2) structures by small molecule-assisted nucleation for plasmon-enhanced photocatalytic activity. Chem. Commun. 2016, 52, 116–119.

    CAS  Google Scholar 

  127. Li, Z. X.; Gong, Y. X.; Zhang, X.; Wen, Y. Y.; Yao, J. S.; Hu, M. L.; He, M.; Liu, J. H.; Li, R.; Wang, F. Q. et al. Plasmonic coupling-enhanced in situ photothermal nanoreactor with shape selective catalysis for C-C coupling reaction. Nano Res. 2020, 13, 2812–2818.

    CAS  Google Scholar 

  128. Wang, D. K.; Li, Z. H. Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. J. Catal. 2016, 342, 151–157.

    CAS  Google Scholar 

  129. Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem. 2018, 130, 5477–5481.

    Google Scholar 

  130. Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd Nanocubes@ ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. 2016, 128, 3749–3753.

    Google Scholar 

  131. Sun, D. R.; Jang, S.; Yim, S. J.; Ye, L.; Kim, D. P. Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv. Funct. Mater. 2018, 28, 1707110.

    Google Scholar 

  132. Sun, D. R.; Kim, D. P. Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Interfaces 2020, 12, 20589–20595.

    CAS  Google Scholar 

  133. Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237–3249.

    CAS  Google Scholar 

  134. Gao, S. T.; Feng, T.; Feng, C.; Shang, N. Z.; Wang, C. Novel visible-light-responsive Ag/AgCl@MIL-101 hybrid materials with synergistic photocatalytic activity. J. Colloid Interface Sci. 2016, 466, 284–290.

    CAS  Google Scholar 

  135. Abdelhameed, R. M.; Simões, M. M. Q.; Silva, A. M. S.; Rocha, J. Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles. Chem.—Eur. J. 2015, 21, 11072–11081.

    CAS  Google Scholar 

  136. Liang, R. W.; Luo, S. G.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). Appl. Catal. B: Environ. 2015, 176–177, 240–248.

    Google Scholar 

  137. Reddy, C. V.; Reddy, K. R.; Harish, V. V. N.; Shim, J.; Shankar, M. V.; Shetti, N. P.; Aminabhavi, T. M. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int. J. Hydrogen Energy 2020, 45, 7656–7679.

    CAS  Google Scholar 

  138. Zhang, X.; Wang, J.; Dong, X. X.; Lv, Y. K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 2020, 242, 125144.

    CAS  Google Scholar 

  139. Shen, L. J.; Wu, W. M.; Liang, R. W.; Lin, R.; Wu, L. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 2013, 5, 9374–9382.

    CAS  Google Scholar 

  140. Zhang, Y. F.; Park, S. J. Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(VI) in aqueous solution. Chem. Eng. J. 2019, 369, 353–362.

    CAS  Google Scholar 

  141. Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

    CAS  Google Scholar 

  142. Dong, X. Y.; Si, Y. B.; Yang, J. S.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nat. Commun. 2020, 11, 3678.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Basic Research Program of China (No. 2016YFA0200700, Z. Y. T.), the National Natural Science Foundation of China (Nos. 21890381 and 21721002, Z. Y. T.), Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038, Z. Y. T.), K.C. Wong Education Foundation (Z. Y. T.) and the National Natural Science Foundation of China (No. 21905195, M. T. Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiting Zhao or Zhiyong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wan, Y., Zhu, Y. et al. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 14, 2037–2052 (2021). https://doi.org/10.1007/s12274-020-3182-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3182-1

Keywords

Navigation