Skip to main content
Log in

Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bottom-up synthesis of graphene nanoribbons (GNRs) by surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers has been shown to yield precise edges and doping. Here we use a precursor monomer containing sulfur atoms to fabricate nanostructures on a Au(111) surface at different annealing temperatures. The nanostructures have distinct configurations, varying from sulfur-doped polymers to sulfur-doped chevron-type GNRs (CGNRs) and, finally, pristine graphene nanoribbons with specific edges of periodic five-member carbon rings. Non-contact atomic force microscopy provides clear evidence for the cleavage of C–S bonds and formation of pristine CGNRs at elevated annealing temperatures. First-principles calculations show that the CGNRs exhibit negative differential resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  2. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  3. Lv, R. T.; Terrones, M. Towards new graphene materials: Doped graphene sheets and nanoribbons. Mater. Lett. 2012, 78, 209–218.

    Article  Google Scholar 

  4. Bronner, C.; Stremlau, S.; Gille, M.; Brauβe, F.; Haase, A.; Hecht, S.; Tegeder, P. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem., Int. Ed. 2013, 52, 4422–4425.

    Article  Google Scholar 

  5. Cai, J. M.; Pignedoli, C. A.; Talirz, L.; Ruffieux, P.; Söde, H.; Liang, L. B.; Meunier, V.; Berger, R.; Li, R. J.; Feng, X. L. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 2014, 9, 896–900.

    Article  Google Scholar 

  6. Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.

    Article  Google Scholar 

  7. Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Müllen, K.; Gao, H. J. Direct visualization of atomically precise nitrogen-doped gravphene nanoribbons. Appl. Phys. Lett. 2014, 105, 023101.

    Article  Google Scholar 

  8. Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  9. Wang, X. R.; Dai, H. J. Etching and narrowing of graphene from the edges. Nat. Chem. 2010, 2, 661–665.

    Article  Google Scholar 

  10. Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nan. 2014, 8, 9181–9187.

    Article  Google Scholar 

  11. Yang, W. L.; Lucotti, A.; Tommasini, M.; Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 2016, 138, 9137–9144.

    Article  Google Scholar 

  12. Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Natur. 2010, 466, 470–473.

    Article  Google Scholar 

  13. Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nan. 2013, 7, 6123–6128.

    Article  Google Scholar 

  14. Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Natur. 2016, 531, 489–492.

    Article  Google Scholar 

  15. Nguyen, G. D.; Tom, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem.. 2016, 120, 2684–2687.

    Article  Google Scholar 

  16. Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Müllen, K.; Lin, X. et al. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384.

    Article  Google Scholar 

  17. Wang, L. D.; He, W.; Yu, Z. K. Transition-metal mediated carbon-sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–621.

    Article  Google Scholar 

  18. Zhong, C. J.; Porter, M. D. Evidence for carbon-sulfur bond cleavage in spontaneously adsorbed organosulfide-based monolayers at gold. J. Am. Chem. Soc. 1994, 116, 11616–11617.

    Article  Google Scholar 

  19. Kundu, S.; Brennessel, W. W.; Jones, W. D. C–S bond activation of thioesters using platinum(0). Organometallic. 2011, 30, 5147–5154.

    Article  Google Scholar 

  20. McWhorter, A. L.; Foyt, A. G. Bulk gaas negative conductance amplifiers. Appl. Phys. Lett. 1966, 9, 300–302.

    Article  Google Scholar 

  21. Broekaert, T. P. E.; Brar, B.; van der Wagt, J. P. A.; Seabaugh, A. C.; Morris, F. J.; Moise, T. S.; Beam, E. A.; Frazier, G. A. A monolithic 4-bit 2-Gsps resonant tunneling analog-to-digital converter. IEEE J. Solid-St. Circ. 1998, 33, 1342–1349.

    Article  Google Scholar 

  22. Brown, E. R.; Söderstrom, J. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; McGill, T. C. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes. Appl. Phys. Lett. 1991, 58, 2291–2293.

    Article  Google Scholar 

  23. Hua, R. M.; Takeda, H.; Onozawa, S. Y.; Abe, Y.; Tanaka, M. Palladium-catalyzed thioesterification of alkynes with O-methyl S-phenyl thiocarbonate. J. Am. Chem. Soc. 2001, 123, 2899–2900.

    Article  Google Scholar 

  24. Pavliček, N.; Majzik, Z.; Collazos, S.; Meyer, G.; Pérez, D.; Guitián, E.; Peña, D.; Gross, L. Generation and characterization of a meta-aryne on Cu and NaCl surfaces. ACS Nan. 2017, 11, 10768–10773.

    Article  Google Scholar 

  25. Schuler, B.; Fatayer, S.; Mohn, F.; Moll, N.; Pavliček, N.; Meyer, G.; Peña, D.; Gross, L. Reversible bergman cyclization by atomic manipulation. Nat. Chem. 2016, 8, 220–224.

    Article  Google Scholar 

  26. Ren, H.; Li, Q. X.; Luo, Y.; Yang, J. L. Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 2009, 94, 173110.

    Article  Google Scholar 

  27. Nguyen, V. H.; Bournel, A.; Dollfus, P. Large peak-to-valley ratio of negative-differential-conductance in graphene p-n junctions. J. Appl. Phys. 2011, 109, 093706.

    Article  Google Scholar 

  28. Galperin, M.; Nitzan, A.; Ratner, M. A. The non-linear response of molecular junctions: The polaron model revisited. J. Phys.: Condens. Matte. 2008, 20, 374107.

    Google Scholar 

  29. Migliore, A.; Nitzan, A. Irreversibility and hysteresis in redox molecular conduction junctions. J. Am. Chem. Soc. 2013, 135, 9420–9432.

    Article  Google Scholar 

  30. Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005.

    Book  Google Scholar 

  31. Bartels, L.; Meyer, G.; Rieder, K. H. Controlled vertical manipulation of single COmolecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 1997, 71, 213–215.

    Article  Google Scholar 

  32. Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Scienc. 2009, 325, 1110–1114.

    Article  Google Scholar 

  33. Perdew, J. P.; Zunger, A. Self-interaction correction to densityfunctional approximations for many-electron systems. Phys. Rev.. 1981, 23, 5048–5079.

    Article  Google Scholar 

  34. Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  35. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev.. 1996, 54, 11169–11186.

    Article  Google Scholar 

  36. Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev.. 2001, 63, 245407.

    Article  Google Scholar 

  37. Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev.. 2002, 65, 165401.

    Article  Google Scholar 

  38. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matte. 2002, 14, 2745–2779.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Key Research and Development Projects of China (No. 2016YFA0202300), the National Basic Research Program of China (No. 2013CBA01600), the National Natural Science Foundation of China (Nos. 61390501,51572290, 61306015, 61471337, 51325204, and 11604373), the Chinese Academy of Sciences (Nos. 1731300500015 and XDB07030100), and the CAS Pioneer Hundred Talents Program. A portion of the research was performed in CAS Key Laboratory of Vacuum Physics. Work at Vanderbilt (S. T. P. and Y. Y. Z.) was supported by the US Department of Energy under grant DEFG02-09ER46554 and by the McMinn Endowment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinliang Feng or Shixuan Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Qi, J., Zhang, YF. et al. Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. Nano Res. 11, 6190–6196 (2018). https://doi.org/10.1007/s12274-018-2136-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2136-3

Keywords

Navigation