Nano Research

, Volume 11, Issue 7, pp 3886–3898 | Cite as

Inhibition of osteosarcoma growth and metastasis using a polysaccharide derivative of Amy-g-PLLD for the delivery of AEG-1 siRNA

  • Fen Wang
  • Jiadong Pang
  • Leilei Huang
  • Ran Wang
  • Qing Jiang
  • Liming Zhang
  • Kang Sun
Research Article


Osteosarcoma is the most common primary malignant neoplasm of the bone in children and adolescents and has a high risk of relapse and metastasis. Of the various methods to treat osteosarcoma, the use of genetic approaches to inhibit the rapid growth of osteosarcoma while limiting tumor metastasis has presented a challenge in its implementation. Here, we successfully synthesized a polysaccharide derivative (Amy-g-PLLD) for delivery of astrocyte elevated gene-1 (AEG-1) small-interfering RNA (siRNA) (siAEG-1), and used it for the first time to suppress osteosarcoma tumors in vitro and in vivo. Amy-g-PLLD/ siAEG-1 complexes were delivered into 143B human osteosarcoma cells with low resultant cytotoxicity. Osteosarcoma tumor proliferation and invasion were inhibited in vitro. Intratumoral injection of Amy-g-PLLD/siAEG-1 complexes markedly inhibited tumor growth and lung metastasis in 143B tumor-bearing mice. This biocompatible and effective approach employing a natural material-siRNA complex should pave the way for more genetic research in treating osteosarcoma.


osteosarcoma amylose gene delivery astrocyte elevated gene-1 (AEG-1) small-interfering RNA (siRNA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 81402221 and 51273216), the Research Fund for the Doctoral Program of Higher Education of China (No. 20130171120077), the Science and Technology Program of Guangzhou, China (No. 201707010108), the Guangdong Innovative Research Team Program (No. 2009010057), and the Science and Technology Planning Project of Guangzhou (No. 201610010006), the Science and Technology Planning project of Guangdong Province (No. 20153900042020319) and Natural Science Foundation of Guangdong Province (No. 2016A030313819).

Supplementary material

12274_2018_1965_MOESM1_ESM.pdf (3 mb)
Inhibition of osteosarcoma growth and metastasis using a polysaccharide derivative of Amy-g-PLLD for the delivery of AEG-1 siRNA


  1. [1]
    Mirabello, L.; Troisi, R. J.; Savage, S. A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer 2009, 115, 1531–1543.CrossRefGoogle Scholar
  2. [2]
    Stiller, C. A.; Bielack, S. S.; Jundt, G.; Steliarova-Foucher, E. Bone tumours in European children and adolescents, 1978–1997. Report from the automated childhood cancer information system project. Eur. J. Cancer 2006, 42, 2124–2135.Google Scholar
  3. [3]
    Bacci, G.; Briccoli, A.; Ferrari, S.; Saeter, G.; Donati, D.; Longhi, A.; Manfrini, M.; Bertoni, F.; Rimondini, S.; Monti, C. et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with synchronous lung metastases: Treatment with cisplatin, adriamycin and high dose of methotrexate and ifosfamide. Oncol. Rep. 2000, 7, 339–385.Google Scholar
  4. [4]
    Su, Z. Z.; Kang, D. C.; Chen, Y. M.; Pekarskaya, O.; Chao, W.; Volsky, D. J.; Fisher, P. B. Identification and cloning of human astrocyte genes displaying elevated expression after infection with HIV-1 or exposure to HIV-1 envelope glycoprotein by rapid subtraction hybridization, RaSH. Oncogene 2002, 21, 3592–3602.CrossRefGoogle Scholar
  5. [5]
    Yoo, B. K.; Emdad, L.; Su, Z. Z.; Villanueva, A.; Chiang, D. Y.; Mukhopadhyay, N. D.; Mills, A. S.; Waxman, S.; Fisher, R. A.; Llovet, J. M. et al. Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. J. Clin. Invest. 2009, 119, 465–477.CrossRefGoogle Scholar
  6. [6]
    Wang, F.; Ke, Z. F.; Sun, S. J.; Chen, W. F.; Yang, S. C.; Li, S. H.; Mao, X. P.; Wang, L. T. Oncogenic roles of astrocyte elevated gene-1 (AEG-1) in osteosarcoma progression and prognosis. Cancer Biol. Ther. 2011, 12, 539–548.CrossRefGoogle Scholar
  7. [7]
    Sledz, C. A.; Williams, B. R. G. RNA interference in biology and disease. Blood 2005, 106, 787–794.CrossRefGoogle Scholar
  8. [8]
    Anderson, W. F. Human gene therapy. Nature 1998, 392, 25–30.CrossRefGoogle Scholar
  9. [9]
    Li, W. J.; Szoka, F. C. Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 2007, 24, 438–449.Google Scholar
  10. [10]
    Daka, A.; Peer, D. RNAi-based nanomedicines for targeted personalized therapy. Adv. Drug Deliv. Rev. 2012, 64, 1508–1521.CrossRefGoogle Scholar
  11. [11]
    Peer, D. Harnessing RNAi nanomedicine for precision therapy. Mol. Cell Ther. 2014, 2, 5.CrossRefGoogle Scholar
  12. [12]
    Tian, H. Y.; Chen, J.; Chen, X. S. Nanoparticles for gene delivery. Small 2013, 9, 2034–2044.CrossRefGoogle Scholar
  13. [13]
    Williford, J. M.; Wu, J.; Ren, Y.; Archang, M. M.; Leong, K. W.; Mao, H. Q. Recent advances in nanoparticlemediated siRNA delivery. Annu. Rev. Biomed. Eng. 2014, 16, 347–370.CrossRefGoogle Scholar
  14. [14]
    Semple, S. C.; Akinc, A.; Chen, J. X.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W.; Stebbing, D.; Crosley, E. J.; Yaworski, E. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176.CrossRefGoogle Scholar
  15. [15]
    Sato, Y.; Hatakeyama, H.; Sakurai, Y.; Hyodo, M.; Akita, H.; Harashima, H. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Release 2012, 163, 267–276.CrossRefGoogle Scholar
  16. [16]
    Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009, 9, 2059–2064.CrossRefGoogle Scholar
  17. [17]
    Lei, Y. F.; Tang, L. X.; Xie, Y. Z. Y.; Xianyu, Y. L.; Zhang, L. M.; Wang, P.; Hamada, Y.; Jiang, K.; Zheng, W. F.; Jiang, X. Y. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 2017, 8, 15130.CrossRefGoogle Scholar
  18. [18]
    Xiao, Y. L.; Jaskula-Sztul, R.; Javadi, A.; Xu, W. J.; Eide, J.; Dammalapati, A.; Kunnimalaiyaan, M.; Chen, H.; Gong, S. Q. Co-delivery of doxorubicin and siRNA using octreotideconjugated gold nanorods for targeted neuroendocrine cancer therapy. Nanoscale 2012, 4, 7185–7193.CrossRefGoogle Scholar
  19. [19]
    Sun, C. Y.; Shen, S.; Xu, C. F.; Li, H. J.; Liu, Y.; Cao, Z. T.; Yang, X. Z.; Xia, J. X.; Wang, J. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J. Am. Chem. Soc. 2015, 137, 15217–15224.CrossRefGoogle Scholar
  20. [20]
    Cai, X. J.; Zhu, H. F.; Zhang, Y. M.; Gu, Z. W. Highly efficient and safe delivery of VEGF siRNA by bioreducible fluorinated peptide dendrimers for cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 9402–9415.CrossRefGoogle Scholar
  21. [21]
    Zhang, N.; Chen, H.; Liu, A. Y.; Shen, J. J.; Shah, V.; Zhang, C.; Hong, J.; Ding, Y. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 2016, 74, 280–291.CrossRefGoogle Scholar
  22. [22]
    Zhao, X.; Li, F.; Li, Y. Y.; Wang, H.; Ren, H.; Chen, J.; Nie, G. J.; Hao, J. H. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 2015, 46, 13–25.CrossRefGoogle Scholar
  23. [23]
    Lee, J. M.; Yoon, T. J.; Cho, Y. S. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. Biomed. Res. Int. 2013, 2013, 782041.Google Scholar
  24. [24]
    Singha, K.; Namgung, R.; Kim, W. J. Polymers in smallinterfering RNA delivery. Nucl. Acid Ther. 2011, 21, 133–147.CrossRefGoogle Scholar
  25. [25]
    Merdan, T.; Kopecek, J.; Kissel, T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 2002, 54, 715–758.CrossRefGoogle Scholar
  26. [26]
    Miyata, K.; Kakizawa, Y.; Nishiyama, N.; Yamasaki, Y.; Watanabe, T.; Kohara, M.; Kataoka, K. Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver. J. Control. Release 2005, 109, 15–23.CrossRefGoogle Scholar
  27. [27]
    Sun, P.; Huang, W.; Jin, M.; Wang, Q.; Fan, B.; Kang, L.; Gao, Z. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int. J. Nanomed. 2016, 11, 4931–4945.CrossRefGoogle Scholar
  28. [28]
    Cai, X.; Yang, L. Q.; Huang, Y. F.; Peng, N. F.; Zhang, L. M.; Wu, Q.; Chen, R. F. Targeted and controlled release of indomethacin from a prodrug of amylose. In Proceedings of the 7th Asian-Pacific Conference on Medical and Biological Engineering, Berlin, Heidelberg, 2008, pp 29–31.CrossRefGoogle Scholar
  29. [29]
    Gao, W.; Sha, B. Y.; Zou, W.; Liang, X.; Meng, X. Z.; Xu, H.; Tang, J.; Wu, D. C.; Xu, L. X.; Zhang, H. Cationic amylose-encapsulated bovine hemoglobin as a nanosized oxygen carrier. Biomaterials 2011, 32, 9425–9433.CrossRefGoogle Scholar
  30. [30]
    Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L. Substituted amylose matrices for oral drug delivery. Biomed. Mater. 2007, 2, S71–S77.CrossRefGoogle Scholar
  31. [31]
    Qiu, C.; Qin, Y.; Zhang, S. L.; Xiong, L.; Sun, Q. J. A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: Their characteristics and the adsorption properties of polyphenols. Food Chem. 2016, 213, 579–587.CrossRefGoogle Scholar
  32. [32]
    Pahimanolis, N.; Sorvari, A.; Luong, N. D.; Seppälä, J. Thermoresponsive xylan hydrogels via copper-catalyzed azide-alkyne cycloaddition. Carbohydr. Polym. 2014, 102, 637–644.CrossRefGoogle Scholar
  33. [33]
    Ma, D.; Zhang, H. B.; Chen, Y. Y.; Lin, J. T.; Zhang, L. M. New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery. J. Colloid Interface Sci. 2013, 405, 305–311.CrossRefGoogle Scholar
  34. [34]
    Pang, J. D.; Zhuang, B. X.; Mai, K. J.; Chen, R. F.; Wang, J.; Zhang, L. M. Click modification of helical amylose by poly(L-lysine) dendrons for non-viral gene delivery. Mater. Sci. Eng. C 2015, 49, 485–492.CrossRefGoogle Scholar
  35. [35]
    Wang, F.; Ke, Z. F.; Wang, R.; Wang, Y. F.; Huang, L. L.; Wang, L. T. Astrocyte elevated gene-1 (AEG-1) promotes osteosarcoma cell invasion through the JNK/c-Jun/MMP-2 pathway. Biochem. Biophys. Res. Common. 2014, 452, 933–939.CrossRefGoogle Scholar
  36. [36]
    Yu, C. P.; Chen, K.; Zheng, H. Q.; Guo, X. Z.; Jia, W. H.; Li, M. Z.; Zeng, M. S.; Li, J.; Song, L. B. Overexpression of astrocyte elevated gene-1 (AEG-1) is associated with esophageal squamous cell carcinoma (ESCC) progression and pathogenesis. Carcinogenesis 2009, 30, 894–901.CrossRefGoogle Scholar
  37. [37]
    Emdad, L.; Sarkar, D.; Su, Z. Z.; Randolph, A.; Boukerche, H.; Valerie, K.; Fisher, P. B. Activation of the nuclear factor ?B pathway by astrocyte elevated gene-1: Implications for tumor progression and metastasis. Cancer Res. 2006, 66, 1509–1516.CrossRefGoogle Scholar
  38. [38]
    Yoo, B. K.; Emdad, L.; Su, Z. Z.; Villanueva, A.; Chiang, D. Y.; Mukhopadhyay, N. D.; Mills, A. S.; Waxman, S.; Fisher, R. A.; Llovet, J. M. et al. Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. J. Clin. Invest. 2009, 119, 465–477.CrossRefGoogle Scholar
  39. [39]
    Kawata, E.; Ashihara, E.; Kimura, S.; Takenaka, K.; Sato, K.; Tanaka, R.; Yokota, A.; Kamitsuji, Y.; Takeuchi, M.; Kuroda, J. et al. Administration of PLK-1 small interfering RNA with atelocollagen prevents the growth of liver metastases of lung cancer. Mol. Cancer Ther. 2008, 7, 2904–2912.CrossRefGoogle Scholar
  40. [40]
    Huh, M. S.; Lee, E. J.; Koo, H.; Yhee, J. Y.; Oh, K. S.; Son, S.; Lee, S.; Kim, S. H.; Kwon, I. C.; Kim, K. Polysaccharidebased nanoparticles for gene delivery. Topics Curr. Chem. 2017, 375, 31.CrossRefGoogle Scholar
  41. [41]
    Raemdonck, K.; Martens, T. F.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliv. Rev. 2013, 65, 1123–1147.CrossRefGoogle Scholar
  42. [42]
    Rejman, J.; Oberle, V.; Zuhorn, I. S.; Hoekstra, D. Sizedependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377, 159–169.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyThe First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  2. 2.PCFM Lab and GDHPPC Lab, School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of EngineeringSun Yat-sen UniversityGuangzhouChina
  4. 4.School Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentsSun Yat-sen UniversityGuangzhouChina

Personalised recommendations