Skip to main content
Log in

Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Normal levels of oxygen free radicals play an important role in cellular signal transduction, redox homeostasis, regulatory pathways, and metabolic processes. However, radiolysis of water induced by high-energy radiation can produce excessive amounts of exogenous oxygen free radicals, which cause severe oxidative damages to all cellular components, disrupt cellular structures and signaling pathways, and eventually lead to death. Herein, we show that hybrid nanoshields based on single-layer graphene encapsulating metal nanoparticles exhibit high catalytic activity in scavenging oxygen superoxide(·\({O_{\bar 2}}\)), hydroxyl (·OH), and hydroperoxyl (HO2·) free radicals via electron transfer between the single-layer graphene and the metal core, thus achieving biocatalytic scavenging both in vitro and in vivo. The levels of the superoxide enzyme, DNA, and reactive oxygen species measured in vivo clearly show that the nanoshields can efficiently eliminate harmful oxygen free radicals at the cellular level, both in organs and circulating blood. Moreover, the nanoshieldslead to an increase in the overall survival rate of gamma ray-irradiated mice to up to 90%, showing the great potential of these systems as protective agentsagainst ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lushbaugh, C. C.; Casarett, G. W. The effects of gonadal irradiation in clinical radiation therapy: A review. Cancer 1976, 37, 1111–1120.

    Article  Google Scholar 

  2. Laperriere, N.; Zuraw, L.; Cairncross, G. Radiotherapy for newly diagnosed malignant glioma in adults: A systematic review. Radiother. Oncol. 2002, 64, 259–273.

    Article  Google Scholar 

  3. Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: Radiobiology meets molecular pathology. Nat. Rev. Cancer 2006, 6, 702–713.

    Article  Google Scholar 

  4. Evans, H. J.; Buckton, K. E.; Hamilton, G. E.; Carothers, A. Radiation-induced chromosome aberrations in nuclear-dockyard workers. Nature 1979, 277, 531–534.

    Article  Google Scholar 

  5. Hainfeld, J. F.; Dilmanian, F. A.; Slatkin D. N.; Smilowitz, H. M. Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol. 2008, 60, 977–985.

    Article  Google Scholar 

  6. Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 2000, 29, 323–333.

    Article  Google Scholar 

  7. Mishra, K. P. Cell membrane oxidative damage induced by gamma-radiation and apoptotic sensitivity. J. Environ. Pathol. Toxicol. Oncol. 2004, 23, 61–66.

    Article  Google Scholar 

  8. Yuan, X.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014, 7, 301–307.

    Article  Google Scholar 

  9. Talmage, D. W. Effect of ionizing radiation on resistance and infection. Annu. Rev. Microbiol. 1955, 9, 335–346.

    Article  Google Scholar 

  10. Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed.-Nanotechnol. Biol. Med. 2009, 5, 225–231.

    Article  Google Scholar 

  11. Fan, S.; Meng, Q.; Xu, J.; Jiao, Y.; Zhao, L.; Zhang, X.; Sarkar, F. H.; Brown, M. L.; Dritschilo, A.; Rosen, E. M. DIM (3, 3’-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 18650–18655.

    Article  Google Scholar 

  12. Zhang, X.-D.; Zhang, J. X.; Wang, J. Y.; Yang, J.; Chen, J.; Shen, X.; Deng, J.; Deng, D. H.; Long, W.; Sun, Y.-M. et al. Highly catalytic nanodots with renal clearance for radiation protection. ACS Nano 2016, 10, 4511–4519.

    Article  Google Scholar 

  13. Tarnuzzer, R. W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from radiat-ion-induced cellular damage. Nano Lett. 2005, 5, 2573–2577.

    Article  Google Scholar 

  14. Li, Y. Y.; He, X.; Yin, J. J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1832–1835.

    Article  Google Scholar 

  15. Feliciano, C. P.; Tsuboi, K.; Suzuki, K.; Kimura, H.; Nagasaki, Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 2017, 129, 68–82.

    Article  Google Scholar 

  16. Pacelli, C.; Bryan, R. A.; Onofri, S.; Selbmann, L.; Shuryak, I.; Dadachova, E. Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environ. Microbiol. 2017, 19, 1612–1624.

    Article  Google Scholar 

  17. Briggs, A.; Corde, S.; Oktaria, S.; Brown, R.; Rosenfeld, A.; Lerch, M.; Konstantinov, K.; Tehei, M. Cerium oxide nanoparticles: Influence of the high-Z component revealed on radioresistant 9L cell survival under X-ray irradiation. Nanomed.-Nanotechnol. Biol. Med. 2013, 9, 1098–1105.

    Article  Google Scholar 

  18. Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomed.-Nanotechnol. Biol. Med. 2010, 6, 698–705.

    Article  Google Scholar 

  19. Che, P.; Liu, W.; Chang, X. X.; Wang, A. H.; Han, Y. S. Multifunctional silver film with superhydrophobic and antibacterial properties. Nano Res. 2016, 9, 442–450.

    Article  Google Scholar 

  20. Kang, D.-W.; Kim, C. K.; Jeong, H.-G.; Soh, M.; Kim, T.; Choi, I.-Y.; Ki, S.-K.; Yang, W.; Hyeon, T.; Lee, S.-H. Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage. Nano Res. 2017, 10, 2743–2760.

    Article  Google Scholar 

  21. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  Google Scholar 

  22. Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-per-formance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

    Article  Google Scholar 

  23. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  Google Scholar 

  24. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46.

    Article  Google Scholar 

  25. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  Google Scholar 

  26. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  27. Rossmeisl, J.; Karlberg, G. S.; Jaramillo, T.; Nørskov, J. K. Steady state oxygen reduction and cyclic voltammetry. Faraday Discuss. 2008, 140, 337–346.

    Article  Google Scholar 

  28. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  Google Scholar 

  29. Yang, K.; Li, Y. J.; Tan, X. F.; Peng, R.; Liu, Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 2013, 9, 1492–1503.

    Article  Google Scholar 

  30. Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S.-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  31. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  Google Scholar 

  32. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

    Article  Google Scholar 

  33. Yu, C. Y. Y.; Xu, H. E.; Ji, S. L.; Kwok, R. T. K.; Lam, J. W. Y.; Li, X. L.; Krishnan, S.; Ding, D.; Tang, B. Z. Mitoch-ondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosen-sitivity of cancer cells to ionizing radiation. Adv. Mater. 2017, 29, 1606167.

    Article  Google Scholar 

  34. Zhang, X. D.; Chen, J.; Min, Y. H.; Park, G. B.; Shen, X.; Song, S. S.; Sun, Y. M.; Wang, H.; Long, W.; Xie, J. et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv. Funct. Mater. 2014, 24, 1718–1729.

    Article  Google Scholar 

  35. Zhang, X. D.; Chen, J.; Luo, Z. T.; Wu, D.; Shen, X.; Song, S. S.; Sun, Y. M.; Liu, P. X.; Zhao, J.; Huo, S. D. et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthcare Mater. 2014, 3, 133–141.

    Article  Google Scholar 

  36. Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 2010, 6, 138–144.

    Article  Google Scholar 

  37. Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410–1415.

    Article  Google Scholar 

  38. Huang, X. L.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J. X.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q. M. et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7, 5684–5693.

    Article  Google Scholar 

  39. Zhang, W. D.; Wang, C.; Li, Z. J.; Lu, Z. Z.; Li, Y. Y.; Yin, J. J.; Zhou, Y. T.; Gao, X. F.; Fang, Y.; Nie, G. J. et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv. Mater. 2012, 24, 5391–5397.

    Article  Google Scholar 

  40. Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Article  Google Scholar 

  41. Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.

    Article  Google Scholar 

  42. Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning, X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978–4981.

    Article  Google Scholar 

  43. Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au10−12(SG)10−12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565–4568.

    Article  Google Scholar 

  44. Liu, J.; Wang, P. Y.; Zhang, X.; Wang, L. M.; Wang, D. L.; Gu, Z. J.; Tang, J. L.; Guo, M. Y.; Cao, M. J.; Zhou, H. G. et al. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano 2016, 10, 4587–4598.

    Article  Google Scholar 

  45. Zhang, X. D.; Wang, H. S.; Antaris, A. L.; Li, L. L.; Diao, S.; Ma, R.; Nguyen, A.; Hong, G. S.; Ma, Z. R.; Wang, J. et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv. Mater. 2016, 28, 6872–6879.

    Article  Google Scholar 

  46. Feng, L. Z.; Cheng, L.; Dong, Z. L.; Tao, D. L.; Barnhart, T. E.; Cai, W. B.; Chen, M. W.; Liu, Z. Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano 2016, 11, 927–937.

    Article  Google Scholar 

  47. Zhang, C.; Zhao, K. L.; Bu, W. B.; Ni, D. L.; Liu, Y. Y.; Feng, J. W.; Shi, J. L. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2015, 127, 1790–1794.

    Article  Google Scholar 

  48. Cong, W. S.; Wang, P.; Qu, Y.; Tang, J. L.; Bai, R.; Zhao, Y. L.; Chen, C. Y.; Bi, X. L. Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis Elegans. Biomaterials 2015, 42, 78–86.

    Article  Google Scholar 

  49. Zhang, W.; Hu, S. L.; Yin, J.-J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865.

    Article  Google Scholar 

  50. Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716–2723.

    Article  Google Scholar 

  51. Nakayama, M.; Sasaki, R.; Mukohara, T.; Ogino, C.; Morita, K.; Umetsu, M.; Ohara, S.; Sato, K.; Numako, C.; Takami, S. et al. Abstract 3337: Titanium peroxide nanoparticles enhance anti-tumor efficacy through reactive oxygen species in pancreatic cancer radiation therapy. Cancer Res. 2015, 75, 3337.

    Article  Google Scholar 

  52. Shim, M. S.; Xia, Y. N. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., Int. Ed. 2013, 52, 6926–6929.

    Article  Google Scholar 

  53. Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z. F.; Liu, Z.; Yang, K. Core–shell Au@ MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. 2016, 9, 3267–3278.

    Article  Google Scholar 

  54. Wang, L. M.; Sun, Q.; Wang, X.; Wen, T.; Yin, J.-J.; Wang, P. Y.; Bai, R.; Zhang, X.-Q.; Zhang, L.-H.; Lu, A.-H. et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955.

    Article  Google Scholar 

  55. Wang, L. M.; Zhang, T. L.; Li, P. Y.; Huang, W. X.; Tang, J. L.; Wang, P. Y.; Liu, J.; Yuan, Q. X.; Bai, R.; Li, B. et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 2015, 9, 6532–6547.

    Article  Google Scholar 

  56. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  57. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  58. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  59. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Ministry of Science and Technology of China (Nos. 2016YFA0204100 and 2016YFA0200200), the National Natural Science Foundation of China (Nos. 81471786, 21573220, and 21303191), the strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09030100), Natural Science Foundation of Tianjin (No. 13JCQNJC13500). We also acknowledge the Shanghai Supercomputer Center for the comp-utational resources. The authors would like to thank Dr. Guosong Hong (Harvard University) for some helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Dong Zhang or Dehui Deng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cui, X., Li, H. et al. Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Res. 11, 2821–2835 (2018). https://doi.org/10.1007/s12274-017-1912-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1912-9

Keywords

Navigation