Nano Research

, Volume 11, Issue 5, pp 2809–2820 | Cite as

In situ atomic-scale observation of monolayer graphene growth from SiC

  • Kaihao Yu
  • Wen Zhao
  • Xing Wu
  • Jianing Zhuang
  • Xiaohui Hu
  • Qiubo Zhang
  • Jun Sun
  • Tao Xu
  • Yang Chai
  • Feng DingEmail author
  • Litao SunEmail author
Research Article


Because of its high compatibility with conventional microfabrication processing technology, epitaxial graphene (EG) grown on SiC shows exceptional promise for graphene-based electronics. However, to date, a detailed understanding of the transformation from three-layer SiC to monolayer graphene is still lacking. Here, we demonstrate the direct atomic-scale observation of EG growth on a SiC (11̅00) surface at 1,000 °C by in situ transmission electron microscopy in combination with ab initio molecular dynamics (AIMD) simulations. Our detailed analysis of the growth dynamics of monolayer graphene reveals that three SiC (11̅00) layers decompose successively to form one graphene layer. Sublimation of the first layer causes the formation of carbon clusters containing short chains and hexagonal rings, which can be considered as the nuclei for graphene growth. Decomposition of the second layer results in the appearance of new chains connecting to the as-formed clusters and the formation of a network with large pores. Finally, the carbon atoms released from the third layer lead to the disappearance of the chains and large pores in the network, resulting in a whole graphene layer. Our study presents a clear picture of the epitaxial growth of the monolayer graphene from SiC and provides valuable information forfuture developments in SiC-derived EG technology.


graphene epitaxial growth in situ transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51420105003, 11525415, 11327901, 61274114, 11674052, and 11604047) and the Fundamental Research Funds for the Central Universities (Nos. 2242016K41039, MTEC-2015M03, and NJ20150026) and the Natural Science Foundation of Jiangsu Province (No. BK20160694). W. Z. and F. D. acknowledge the support of Institute for Basic Science, Republic of Korea (No. IBS-R019-D1). X. W. would like to acknowledge support from the Projects of Science and Technology Commission of Shanghai Municipality (No. 14DZ2260800).

Supplementary material

12274_2017_1911_MOESM1_ESM.pdf (3.4 mb)
In situ atomic-scale observation of monolayer graphene growth from SiC

Supplementary material, approximately 24.7 MB.

12274_2017_1911_MOESM3_ESM.mpg (10 mb)
Supplementary material, approximately 9.97 MB.
12274_2017_1911_MOESM4_ESM.mpg (12.7 mb)
Supplementary material, approximately 12.6 MB.
12274_2017_1911_MOESM5_ESM.mpg (20 mb)
Supplementary material, approximately 20.0 MB.
12274_2017_1911_MOESM6_ESM.mpg (23.2 mb)
Supplementary material, approximately 23.2 MB.

Supplementary material, approximately 10.6 MB.

12274_2017_1911_MOESM8_ESM.mpg (15.6 mb)
Supplementary material, approximately 15.5 MB.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  3. [3]
    Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.CrossRefGoogle Scholar
  4. [4]
    Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.CrossRefGoogle Scholar
  5. [5]
    Lin, Y.-M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294–1297.CrossRefGoogle Scholar
  6. [6]
    Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2008, 2, 2513–2518.CrossRefGoogle Scholar
  7. [7]
    Tanaka, S.; Morita, K.; Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys.Rev. B 2010, 81, 041406.CrossRefGoogle Scholar
  8. [8]
    Norimatsu, W.; Kusunoki, M. Transitional structures of the interface between graphene and 6H–SiC (0001). Chem. Phys. Lett. 2009, 468, 52–56.CrossRefGoogle Scholar
  9. [9]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossRefGoogle Scholar
  10. [10]
    Johansson, L. I.; Watcharinyanon, S.; Zakharov, A. A.; Iakimov, T.; Yakimova, R.; Virojanadara, C. Stacking of adjacent graphene layers grown on C-face SiC. Phys. Rev. B 2011, 84, 125405.CrossRefGoogle Scholar
  11. [11]
    Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J.-Y. Rotational disorder in few-layer graphene films on 6H-SiC(000ī): A scan-ning tunneling microscopy study. Phys. Rev. B 2008, 77, 165415.CrossRefGoogle Scholar
  12. [12]
    Weng, X. J.; Robinson, J. A.; Trumbull, K.; Cavalero, R.; Fanton, M. A.; Snyder, D. Epitaxial graphene on SiC(000ī): Stacking order and interfacial structure. Appl. Phys. Lett. 2012, 100, 031904.CrossRefGoogle Scholar
  13. [13]
    Borysiuk, J.; Sołtys, J.; Piechota, J. Stacking sequence dependence of graphene layers on SiC (000ī)—Experimental and theoretical investigation. J. Appl. Phys. 2011, 109, 093523.CrossRefGoogle Scholar
  14. [14]
    de Heer, W. A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. USA 2011, 108, 16900–16905.CrossRefGoogle Scholar
  15. [15]
    Tromp, R. M.; Hannon, J. B. Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 2009, 102, 106104.CrossRefGoogle Scholar
  16. [16]
    Forbeaux, I.; Themlin, J. M.; Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 16396–16406.CrossRefGoogle Scholar
  17. [17]
    Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W. A.; First, P. N.; Conrad, E. H.; Jeffrey, C. A.; Berger, C. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106.CrossRefGoogle Scholar
  18. [18]
    Kumar, B.; Baraket, M.; Paillet, M.; Huntzinger, J. R.; Tiberj, A.; Jansen, A. G. M.; Vila, L.; Cubuku, M.; Vergnaud, C.; Jamet, M. et al. Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure. Phys. E: Low-dimens. Syst. Nanostr. 2016, 75, 7–14.CrossRefGoogle Scholar
  19. [19]
    Robinson, J. A.; Wetherington, M.; Tedesco, J. L.; Campbell, P. M.; Weng, X.; Stitt, J.; Fanton, M. A.; Frantz, E.; Snyder, D.; VanMil, B. L. et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale. Nano Lett. 2009, 9, 2873–2876.CrossRefGoogle Scholar
  20. [20]
    Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.CrossRefGoogle Scholar
  21. [21]
    Luxmi; Srivastava, N.; He, G. W.; Feenstra, R. M.; Fisher, P. J. Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Phys. Rev. B 2010, 82, 235406.CrossRefGoogle Scholar
  22. [22]
    Hass, J.; Varchon, F.; Millán-Otoya, J. E.; Sprinkle, M.; Sharma, N.; de Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC(000ī) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504.CrossRefGoogle Scholar
  23. [23]
    Hicks, J.; Shepperd, K.; Wang, F.; Conrad, E. H. The structure of graphene grown on the SiC (000ī) surface. J. Phys. D: Appl. Phys. 2012, 45, 154002.CrossRefGoogle Scholar
  24. [24]
    Kageshima, H.; Hibino, H.; Tanabe, S. The physics of epitaxial graphene on SiC(0001). J. Phys.: Condens. Matter 2012, 24, 314215.Google Scholar
  25. [25]
    Bolen, M. L.; Harrison, S. E.; Biedermann, L. B.; Capano, M. A. Graphene formation mechanisms on 4H-SiC(0001). Phys. Rev. B 2009, 80, 115433.CrossRefGoogle Scholar
  26. [26]
    Norimatsu, W.; Kusunoki, M. Formation process of graphene on SiC (0001). Phys. E: Low-dimens. Syst. Nanostr. 2010, 42, 691–694.CrossRefGoogle Scholar
  27. [27]
    Robinson, J.; Weng, X. J.; Trumbull, K.; Cavalero, R.; Wetherington, M.; Frantz, E.; LaBella, M.; Hughes, Z.; Fanton, M.; Snyder, D. Nucleation of epitaxial graphene on SiC(0001). ACS Nano 2009, 4, 153–158.CrossRefGoogle Scholar
  28. [28]
    Hupalo, M.; Conrad, E. H.; Tringides, M. C. Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 2009, 80, 041401.CrossRefGoogle Scholar
  29. [29]
    Norimatsu, W.; Takada, J.; Kusunoki, M. Formation mechanism of graphene layers on SiC (000ī) in a high-pressure argon atmosphere. Phys. Rev. B 2011, 84, 035424.CrossRefGoogle Scholar
  30. [30]
    Camara, N.; Rius, G.; Huntzinger, J.-R.; Tiberj, A.; Magaud, L.; Mestres, N.; Godignon, P.; Camassel, J. Early stage formation of graphene on the C face of 6H-SiC. Appl. Phys. Lett. 2008, 93, 263102.CrossRefGoogle Scholar
  31. [31]
    Hite, J. K.; Twigg, M. E.; Tedesco, J. L.; Friedman, A. L.; Myers-Ward, R. L.; Eddy, C. R., Jr; Gaskill, D. K. Epitaxial graphene nucleation on C-face silicon carbide. Nano Lett. 2011, 11, 1190–1194.CrossRefGoogle Scholar
  32. [32]
    Hwang, Y. B.; Lee, E.-K.; Choi, H.; Yun, K.-H.; Lee, M.; Chung, Y.-C. Atomic behavior of carbon atoms on a Si removed 3C-SiC (111) surface during the early stage of epitaxial graphene growth. J. Appl. Phys. 2012, 111, 104324.CrossRefGoogle Scholar
  33. [33]
    Ryosuke, I.; Takahiro, K.; Yasuyuki, S.; Masato, I.; Yoshihiro, K.; Koichi, K. Molecular dynamics simulation of graphene growth by surface decomposition of 6H-SiC(0001) and (000ī). Jpn. J. Appl. Phys. 2014, 53, 065601.CrossRefGoogle Scholar
  34. [34]
    Tang, C.; Meng, L. J.; Xiao, H. P.; Zhong, J. X. Growth of graphene structure on 6H-SiC(0001): Molecular dynamics simulation. J. Appl. Phys. 2008, 103, 063505.CrossRefGoogle Scholar
  35. [35]
    Daas, B. K.; Omar, S. U.; Shetu, S.; Daniels, K. M.; Ma, S. Sudarshan, T. S.; Chandrashekhar, M. V. S.; Comparison of epitaxial graphene growth on polar and nonpolar 6H-SiC faces: On the growth of multilayer films. Cryst. Growth Des. 2012, 12, 3379–3387.CrossRefGoogle Scholar
  36. [36]
    Low, T.; Perebeinos, V.; Tersoff, J.; Avouris, P. Deformation and scattering in graphene over substrate steps. Phys. Rev. Lett. 2012, 108, 096601.CrossRefGoogle Scholar
  37. [37]
    Ostler, M.; Deretzis, I.; Mammadov, S.; Giannazzo, F.; Nicotra, G.; Spinella, C.; Seyller, T.; La Magna, A. Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 2013, 88, 085408.CrossRefGoogle Scholar
  38. [38]
    Lin, J. J.; Guo, L. W.; Jia, Y. P.; Yang, R.; Wu, S.; Huang, J.; Guo, Y.; Li, Z. L.; Zhang, G. Y.; Chen, X. L. Identification of dominant scattering mechanism in epitaxial graphene on SiC. Appl. Phys. Lett. 2014, 104, 183102.CrossRefGoogle Scholar
  39. [39]
    Deng, D. H.; Pan, X. L.; Zhang, H.; Fu, Q.; Tan, D. L.; Bao, X. Freestanding graphene by thermal splitting of silicon carbide granules. Adv. Mater. 2010, 22, 2168–2171.CrossRefGoogle Scholar
  40. [40]
    Muehlhoff, L.; Choyke, W. J.; Bozack, M. J.; Yates, J. T. Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(000ī). J. Appl. Phys. 1986, 60, 2842–2853.CrossRefGoogle Scholar
  41. [41]
    Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 2001, 64, 591–648.CrossRefGoogle Scholar
  42. [42]
    Rauls, E.; Hajnal, Z.; Deák, P.; Frauenheim, T. Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- and 6H-SiC. Phys. Rev. B 2001, 64, 245323.CrossRefGoogle Scholar
  43. [43]
    Seyller, T.; Graupner, R.; Sieber, N.; Emtsev, K. V.; Ley, L.; Tadich, A.; Riley, J. D.; Leckey, R. C. G. Hydrogen terminated 4H-SiC (1ī00) and (112¯0) surfaces studied by synchrotron x-ray photoelectron spectroscopy. Phys. Rev. B 2005, 71, 245333.CrossRefGoogle Scholar
  44. [44]
    Ming, F.; Zangwill, A. Model for the epitaxial growth of graphene on 6H-SiC(0001). Phys. Rev. B 2011, 84, 115459.CrossRefGoogle Scholar
  45. [45]
    Florian, B. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.CrossRefGoogle Scholar
  46. [46]
    Kusunoki, M.; Suzuki, T.; Hirayama, T.; Shibata, N.; Kaneko, K. A formation mechanism of carbon nanotube films on SiC(0001). Appl. Phys. Lett. 2000, 77, 531–533.CrossRefGoogle Scholar
  47. [47]
    Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.Google Scholar
  48. [48]
    Bernstein, H. J. Bond energies in hydrocarbons. Trans. Faraday Soc. 1962, 58, 2285–2306.CrossRefGoogle Scholar
  49. [49]
    Walsh, R. Bond dissociation energies in organosilicon compounds. In: Silicon in Organic, Organometallic and Polymer Chemistry. M. A. Brook, Ed.; Wiley: New York, 1998.Google Scholar
  50. [50]
    Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Playing with carbon and silicon at the nanoscale. Nat. Mater. 2007, 6, 479–490.CrossRefGoogle Scholar
  51. [51]
    Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.CrossRefGoogle Scholar
  52. [52]
    Li, J. D.; Croiset, E.; Ricardez-Sandoval, L. Carbon clusters on the Ni (111) surface: A density functional theory study. Phys. Chem. Chem. Phys. 2014, 16, 2954–2961.CrossRefGoogle Scholar
  53. [53]
    Yuan, Q. H.; Ding, F. Formation of carbyne and graphyne on transition metal surfaces. Nanoscale 2014, 6, 12727–12731.CrossRefGoogle Scholar
  54. [54]
    Zhang, L. Y.; Zhao, X. J.; Xue, X. L.; Shi, J. L.; Li, C.; Ren, X. Y.; Niu, C. Y.; Jia, Y.; Guo, Z. X.; Li, S. F. Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates. Phys. Chem. Chem. Phys. 2015, 17, 30270–30278.CrossRefGoogle Scholar
  55. [55]
    Van Wesep, R. G.; Chen, H.; Zhu, W. G.; Zhang, Z. Y. Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111). J. Chem. Phys. 2011, 134, 171105.CrossRefGoogle Scholar
  56. [56]
    Zhuang, J. N.; Zhao, R. Q.; Dong, J. C.; Yan, T. Y.; Ding, F. Evolution of domains and grain boundaries in graphene: A kinetic Monte Carlo simulation. Phys. Chem. Chem. Phys. 2016, 18, 2932–2939.CrossRefGoogle Scholar
  57. [57]
    Ding, F.; Yakobson, B. I. Energy-driven kinetic Monte Carlo method and its application in fullerene coalescence. J. Phys. Chem. Lett. 2014, 5, 2922–2926.CrossRefGoogle Scholar
  58. [58]
    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  59. [59]
    Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.CrossRefGoogle Scholar
  60. [60]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  61. [61]
    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.CrossRefGoogle Scholar
  62. [62]
    Donald, W. B.; Olga, A. S.; Judith, A. H.; Steven, J. S.; Boris, N.; Susan, B. S. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 2002, 14, 783–802.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Kaihao Yu
    • 1
  • Wen Zhao
    • 2
    • 4
  • Xing Wu
    • 1
    • 5
  • Jianing Zhuang
    • 4
  • Xiaohui Hu
    • 1
    • 6
  • Qiubo Zhang
    • 1
  • Jun Sun
    • 1
  • Tao Xu
    • 1
  • Yang Chai
    • 9
  • Feng Ding
    • 2
    • 3
    • 4
    Email author
  • Litao Sun
    • 1
    • 7
    • 8
    Email author
  1. 1.SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Center for Multidimensional Carbon MaterialsInstitute for Basic ScienceUlsanRepublic of Korea
  3. 3.School of Materials Science and EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
  4. 4.Institute of Textiles and ClothingHong Kong Polytechnic UniversityHong KongChina
  5. 5.Shanghai Key Laboratory of Multidimensional Information Processing, Department of Electrical EngineeringEast China Normal UniversityShanghaiChina
  6. 6.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  7. 7.Center for Advanced Carbon MaterialsSoutheast University and Jiangnan Graphene Research InstituteChangzhouChina
  8. 8.Center for Advanced Materials and ManufactureJoint Research Institute of Southeast University and Monash UniversitySuzhouChina
  9. 9.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations