Skip to main content
Log in

Strong contact coupling of neuronal growth cones with height-controlled vertical silicon nanocolumns

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we report that height-controlled vertically etched silicon nano-column arrays (vSNAs) induce strong growth cone-to-substrate coupling and accelerate In vitroneurite development while preserving the essential features of initial neurite formation. Large-scale preparation of vSNAs with flat head morphology enabled the generation of well-controlled topographical stimulation without cellular impalement. A systematic analysis on topography-induced variations on cellular morphology and cytoskeletal dynamics was conducted. In addition, neurite development on the grid-patterned vSNAs exhibited preferential adhesion to the nanostructured region and outgrowth directionality. The arrangement of cytoskeletal proteins and the expression of a focal adhesion complex indicated that a strong coupling existed between the underlying nanocolumns and growth cones. Furthermore, the height-controlled nanocolumn substrates differentially modulated neurite polarization and elongation. Our findings provide an important insight into neuron-nanotopography interactions and their role in cell adhesion and neurite development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dent, E. W.; Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 2003, 40, 209–227.

    Article  Google Scholar 

  2. Geraldo, S.; Gordon-Weeks, P. R. Cytoskeletal dynamics in growth-cone steering. J. Cell Sci. 2009, 122, 3595–3604.

    Article  Google Scholar 

  3. Schaar, B. T.; McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc. Natl. Acad. Sci. USA 2005, 102, 13652–13657.

    Article  Google Scholar 

  4. Turney, S. G.; Bridgman, P. C. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat. Neurosci. 2005, 8, 717–719.

    Article  Google Scholar 

  5. Gomez, N.; Chen, S. C.; Schmidt, C. E. Polarization of hippocampal neurons with competitive surface stimuli: Contact guidance cues are preferred over chemical ligands. J. R. Soc. Interface 2007, 4, 223–233.

    Article  Google Scholar 

  6. San Miguel-Ruiz, J. E.; Letourneau, P. C. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate depe-ndent. J. Neurosci. 2014, 34, 5895–5908.

    Article  Google Scholar 

  7. Kerstein, P. C.; Nichol IV, R. H.; Gomez, T. M. Mechan-ochemical regulation of growth cone motility. Front. Cell. Neurosci. 2015, 9, 244.

    Article  Google Scholar 

  8. Kulangara, K.; Leong, K. W. Substrate topography shapes cell function. Soft Matter 2009, 5, 4072–4076.

    Article  Google Scholar 

  9. Teixeira, A. I.; Abrams, G. A.; Bertics, P. J.; Murphy, C. J.; Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 2003, 116, 1881–1892.

    Article  Google Scholar 

  10. Teixeira, A. I.; McKie, G. A.; Foley, J. D.; Bertics, P. J.; Nealey, P. F.; Murphy, C. J. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 2006, 27, 3945–3954.

    Article  Google Scholar 

  11. Yim, E. K. F.; Reano, R. M.; Pang, S. W.; Yee, A. F.; Chen, C. S.; Leong, K. W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 2005, 26, 5405–5413.

    Article  Google Scholar 

  12. Yim, E. K. F.; Darling, E. M.; Kulangara, K.; Guilak, F.; Leong, K. W. Nanotopography-induced changes in focal adhesions, cy-toskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010, 31, 1299–1306.

    Article  Google Scholar 

  13. Watari, S.; Hayashi, K.; Wood, J. A.; Russell, P.; Nealey, P. F.; Murphy, C. J.; Genetos, D. C. Modulation of osteogenic diff-erentiation in hMSCs cells by submicron topographically-patt-erned ridges and grooves. Biomaterials 2012, 33, 128–136.

    Article  Google Scholar 

  14. Foley, J. D.; Grunwald, E. W.; Nealey, P. F.; Murphy, C. J. Cooperative modulation of neuritogenesis by PC12 cells by topography and nerve growth factor. Biomaterials 2005, 26, 3639–3644.

    Article  Google Scholar 

  15. Ferrari, A.; Cecchini, M.; Dhawan, A.; Micera, S.; Tonazzini, I.; Stabile, R.; Pisignano, D.; Beltram, F. Nanotopographic control of neuronal polarity. Nano Lett. 2011, 11, 505–511.

    Article  Google Scholar 

  16. Xie, J. W.; MacEwan, M. R.; Li, X. R.; Sakiyama-Elbert, S. E.; Xia, Y. N. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano 2009, 3, 1151–1159.

    Article  Google Scholar 

  17. Cho, W. K.; Kang, K.; Kang, G.; Jang, M. J.; Nam, Y.; Choi, I. S. Pitch-dependent acceleration of neurite outgrowth on nanos-tructured anodized aluminum oxide substrates. Angew. Chem., Int. Ed. 2010, 49, 10114–10118.

    Google Scholar 

  18. Kang, K.; Choi, S.-E.; Jang, H. S.; Cho, W. K.; Nam, Y.; Choi, I. S.; Lee, J. S. In vitro developmental acceleration of hipp-ocampal neurons on nanostructures of self-assembled silica be-ads in filopodium-size ranges. Angew. Chem., Int. Ed. 2012, 51, 2855–2858.

    Article  Google Scholar 

  19. Jang, K.-J.; Kim, M. S.; Feltrin, D.; Jeon, N. L.; Suh, K.-Y.; Pertz, O. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS One 2010, 5, e15966.

    Article  Google Scholar 

  20. Kang, K.; Yoon, S. Y.; Choi, S.-E.; Kim, M.-H.; Park, M.; Nam, Y.; Lee, J. S.; Choi, I. S. Cytoskeletal actin dynamics are involved in pitch-dependent neurite outgrowth on bead mono-layers. Angew. Chem., Int. Ed. 2014, 53, 6075–6079.

    Article  Google Scholar 

  21. Liu, X. L.; Wang, S. T. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem. Soc. Rev. 2014, 43, 2385–2401.

    Article  Google Scholar 

  22. Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.

    Article  Google Scholar 

  23. Hanson, L.; Lin, Z. C.; Xie, C.; Cui, Y.; Cui, B. X. Chara-cterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett. 2012, 12, 5815–5820.

    Article  Google Scholar 

  24. Xie, X.; Xu, A. M.; Angle, M. R.; Tayebi, N.; Verma, P.; Melosh, N. A. Mechanical model of vertical nanowire cell penetration. Nano Lett. 2013, 13, 6002–6008.

    Article  Google Scholar 

  25. Xu, A. M.; Aalipour, A.; Leal-Ortiz, S.; Mekhdjian, A. H.; Xie, X.; Dunn, A. R.; Garner, C. C.; Melosh, N. A. Quantification of nanowire penetration into living cells. Nat. Commun. 2014, 5, 3613.

    Google Scholar 

  26. Qi, S.; Yi, C. Q.; Ji, S. L.; Fong, C.-C.; Yang, M. S. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 2009, 1, 30–34.

    Article  Google Scholar 

  27. Bonde, S.; Berthing, T.; Madsen, M. H.; Andersen, T. K.; Buch-Månson, N.; Guo, L.; Li, X. M.; Badique, F.; Anselme, K.; Nygård, J. et al. Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: Perspectives for nano-wire-based biosensors. ACS Appl. Mater. Interfaces 2013, 5, 10510–10519.

    Article  Google Scholar 

  28. Padmanabhan, J.; Kinser, E. R.; Stalter, M. A.; Duncan-Lewis, C.; Balestrini, J. L.; Sawyer, A. J.; Schroers, J.; Kyriakides, T. R. Engineering cellular response using nanopatterned bulk metallic glass. ACS Nano 2014, 8, 4366–4375.

    Article  Google Scholar 

  29. Persson, H.; Købler, C.; Mølhave, K.; Samuelson, L.; Teg-enfeldt, J. O.; Oredsson, S.; Prinz, C. N. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 2013, 9, 4006–4016.

    Article  Google Scholar 

  30. Persson, H.; Li, Z.; Tegenfeldt, J. O.; Oredsson, S.; Prinz, C. From immobilized cells to motile cells on a bed-of-nails: Effects of vertical nanowire array density on cell behaviour. Sci. Rep. 2015, 5, 18535.

    Article  Google Scholar 

  31. Li, Z.; Song, J. H.; Mantini, G.; Lu, M.-Y.; Fang, H.; Falconi, C; Chen, L.-J.; Wang, Z. L. Quantifying the traction force of a single cell by aligned silicon nanowire array. Nano Lett. 2009, 9, 3575–3580.

    Article  Google Scholar 

  32. Albuschies, J.; Vogel, V. The role of filopodia in the recognition of nanotopographies. Sci. Rep. 2013, 3, 1658.

    Article  Google Scholar 

  33. Kim, H.; Kim, I.; Choi, H.-J.; Kim, S. Y.; Yang, E. G. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires. Nanoscale 2015, 7, 17131–17138.

    Article  Google Scholar 

  34. Shalek, A. K.; Robinson, J. T.; Karp, E. S.; Lee, J. S.; Ahn, D.R.; Yoon, M.H.; Sutton, A.; Jorgolli, M.; Gertner, R. S.; Gujral, T. S. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. USA 2010, 107, 1870–1875.

    Article  Google Scholar 

  35. Shalek, A. K.; Gaublomme, J. T.; Wang, L. L.; Yosef, N.; Chevrier, N.; Andersen, M. S.; Robinson, J. T.; Pochet, N.; Neuberg, D.; Gertner, R. S. et al. Nanowire-mediated delivery enables functional interrogation of primary immune cells: Application to the analysis of chronic lymphocytic leukemia. Nano Lett. 2012, 12, 6498–6504.

    Article  Google Scholar 

  36. Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett. 2007, 7, 2960–2965.

    Article  Google Scholar 

  37. Prinz, C.; Hällström, W.; Mårtensson, T.; Samuelson, L.; Montelius, L.; Kanje, M. Axonal guidance on patterned free-st-anding nanowire surfaces. Nanotechnology 2008, 19, 345101.

    Article  Google Scholar 

  38. Piret, G.; Perez, M.-T.; Prinz, C. N. Support of neuronal growth over glial growth and guidance of optic nerve axons by vertical nanowire arrays. ACS Appl. Mater. Interfaces 2015, 7, 18944–18948.

    Article  Google Scholar 

  39. Xie, C.; Hanson, L.; Xie, W. J.; Lin, Z. L.; Cui, B. X.; Cui, Y. Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 2010, 10, 4020–4024.

    Article  Google Scholar 

  40. Kang, K.; Park, Y.S.; Park, M.; Jang, M. J.; Kim, S.M.; Lee, J.; Choi, J. Y.; Jung, D. H.; Chang, Y.T.; Yoon, M.H. et al. Axon-first neuritogenesis on vertical nanowires. Nano Lett. 2016, 16, 675–680.

    Article  Google Scholar 

  41. Wierzbicki, R.; Købler, C.; Jensen, M. R. B.; Lopacinska, J.; Schmidt, M. S.; Skolimowski, M.; Abeille, F.; Qvortrup, K.; Mølhave, K. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLoS One 2013, 8, e53307.

    Article  Google Scholar 

  42. Berthing, T.; Bonde, S.; Rostgaard, K. R.; Madsen, M. H.; Sørensen, C. B.; Nygård, J.; Martinez, K. L. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging. Nanotechnology 2012, 23, 415102.

    Article  Google Scholar 

  43. Bucaro, M. A.; Vasquez, Y.; Hatton, B. D.; Aizenberg, J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 2012, 6, 6222–6230.

    Article  Google Scholar 

  44. Lee, S.; Kim, D.; Kim, S.-M.; Kim, J.-A.; Kim, T.; Kim, D.-Y.; Yoon, M.-H. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications. Nanoscale 2015, 7, 14627–14635.

    Article  Google Scholar 

  45. Fath, T.; Ke, Y. D.; Gunning, P.; Götz, J.; Ittner, L. M. Primary support cultures of hippocampal and substantia nigra neurons. Nat. Protoc. 2008, 4, 78–85.

    Article  Google Scholar 

  46. Yang, K.; Jung, H.; Lee, H.-R.; Lee, J. S.; Kim, S. R.; Song, K. Y.; Cheong, E.; Bang, J.; Im, S. G.; Cho, S.-W. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 2014, 8, 7809–7822.

    Article  Google Scholar 

  47. Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P. P. Neurons sense nanoscale roughness with nanometer sensitivity. Proc. Natl. Acad. Sci. USA 2010, 107, 6264–6269.

    Article  Google Scholar 

  48. Elnathan, R.; Delalat, B.; Brodoceanu, D.; Alhmoud, H.; Harding, F. J.; Buehler, K.; Nelson, A.; Isa, L.; Kraus, T.; Voelcker, N. H. Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv. Funct. Mater. 2015, 25, 7215–7225.

    Article  Google Scholar 

  49. Liu, D. D.; Yi, C. Q.; Wang, K. Q.; Fong, C.-C.; Wang, Z. K.; Lo, P. K.; Sun, D.; Yang, M. S. Reorganization of cytoskeleton and transient activation of Ca2+ channels in mesenchymal stem cells cultured on silicon nanowire arrays. ACS Appl. Mater. Interfaces 2013, 5, 13295–13304.

    Article  Google Scholar 

  50. Kuo, S.W.; Lin, H.I.; Hui-Chun Ho, J.; Shih, Y.-R. V.; Chen, H.F.; Yen, T.J.; Lee, O. K. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topog-raphical cues provided by silicon nanowires. Biomaterials 2012, 33, 5013–5022.

    Article  Google Scholar 

  51. Nair, B. G.; Hagiwara, K.; Ueda, M.; Yu, H. H.; Tseng, H.-R.; Ito, Y. High density of aligned nanowire treated with polydopamine for efficient gene silencing by siRNA according to cell membrane perturbation. ACS Appl. Mater. Interfaces 2016, 8, 18693–18700.

    Article  Google Scholar 

  52. Bugnicourt, G.; Brocard, J.; Nicolas, A.; Villard, C. Nanoscale surface topography reshapes neuronal growth in culture. Langmuir 2014, 30, 4441–4449.

    Article  Google Scholar 

  53. Lowery, L. A.; van Vactor, D. The trip of the tip: Understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 2009, 10, 332–343.

    Article  Google Scholar 

  54. Vitriol, E. A.; Zheng, J. Q. Growth cone travel in space and time: The cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012, 73, 1068–1081.

    Article  Google Scholar 

  55. Geiger, B.; Spatz, J. P.; Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 2009, 10, 21–33.

    Article  Google Scholar 

  56. Koch, D.; Rosoff, W. J.; Jiang, J. J.; Geller, H. M.; Urbach, J. S. Strength in the periphery: Growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys. J. 2012, 102, 452–460.

    Article  Google Scholar 

  57. Gilles, S.; Winter, S.; Michael, K. E.; Meffert, S. H.; Li, P. G.; Greben, K.; Simon, U.; Offenhäusser, A.; Mayer, D. Control of cell adhesion and neurite outgrowth by patterned gold nanoparticles with tunable attractive or repulsive surface properties. Small 2012, 8, 3357–3367.

    Article  Google Scholar 

  58. Lamoureux, P.; Ruthel, G.; Buxbaum, R. E.; Heidemann, S. R. Mechanical tension can specify axonal fate in hippocampal neurons. J. Cell Biol. 2002, 159, 499–508.

    Article  Google Scholar 

  59. Bard, L.; Boscher, C.; Lambert, M.; Mège, R.-M.; Choquet, D.; Thoumine, O. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J. Neurosci. 2008, 28, 5879–5890.

    Article  Google Scholar 

  60. Athamneh, A. I. M.; Suter, D. M. Quantifying mechanical force in axonal growth and guidance. Front. Cell. Neurosci. 2015, 9, 359.

    Article  Google Scholar 

  61. Suter, D. M.; Miller, K. E. The emerging role of forces in axonal elongation. Prog. Neurobiol. 2011, 94, 91–101.

    Article  Google Scholar 

  62. Chazeau, A.; Garcia, M.; Czöndör, K.; Perrais, D.; Tessier, B.; Giannone, G.; Thoumine, O. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines. Mol. Biol. Cell 2015, 26, 859–873.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program and the Pioneer Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Nos. NRF-2013R1A1A107-6103, NRF-2012R1A3A2026403, and NRF-2012-000-9664), and also by the GIST Research Institute (GRI) in 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Insung S. Choi, Kyungtae Kang or Myung-Han Yoon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SM., Lee, S., Kim, D. et al. Strong contact coupling of neuronal growth cones with height-controlled vertical silicon nanocolumns. Nano Res. 11, 2532–2543 (2018). https://doi.org/10.1007/s12274-017-1878-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1878-7

Keywords

Navigation