Advertisement

Nano Research

, Volume 11, Issue 6, pp 3258–3271 | Cite as

Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O′3-Na3Ni2SbO6 cathodes

  • Peng-Fei Wang
  • Hu-Rong Yao
  • Ya You
  • Yong-Gang Sun
  • Ya-Xia Yin
  • Yu-Guo Guo
Research Article

Abstract

The development of new sodium ion battery (SIB) cathodes with satisfactory performance requires an in-depth understanding of their structure−function relationships, to rationally design better electrode materials. In this work, highly ordered, honeycomb-layered Na3Ni2SbO6 was prepared to elucidate the structural evolution and Na+ kinetics during electrochemical desodiation/sodiation processes. Structural analysis involving in situ synchrotron X-ray diffraction (XRD) experiments, electrochemical performance measurements, and electrochemical characterization (galvanostatic intermittent titration technique, GITT) methods were used to obtain new insights into the reaction mechanism controlling the (de)intercalation of sodium into the host Na3−xNi2SbO6 structure. Two phase transitions occur (initial O′3 phase → intermediate P′3 phase → final O1 phase) upon Na+ extraction; the partial irreversible O′3-P′3 phase transition is responsible for the insufficient cycling stability. The fast Na+ mobility (average 10–12 cm2·s–1) in the interlayer, high equilibrium voltage (3.27 V), and low voltage polarization (50 mV) establish the linkage between kinetic advantage and a good rate performance of the cathode. These new findings provide deep insight into the reaction mechanism operating in the honeycomb cathode; the present approach could be also extended to investigate other materials for SIBs.

Keywords

sodium-ion batteries (SIB) cathode honeycomb-ordered structural evolution Na+ kinetics 

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFA0202500), the National Natural Science Foundation of China (NSFC) (Nos. 51772301 and 21773264), and the “Strategic Priority Research Program“ of the Chinese Academy of Sciences (No. XDA09010100) and the Chinese Academy of Sciences (CAS).

Supplementary material

12274_2017_1863_MOESM1_ESM.pdf (1.6 mb)
Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O′3-Na3Ni2SbO6 cathodes

References

  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  3. [3]
    Zhao, F. P.; Gong, Q. F.; Traynor, B.; Zhang, D.; Li, J. J.; Ye, H. L.; Chen, F. J.; Han, N.; Wang, Y. Y.; Sun, X. H. et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 2016, 9, 3162–3170.CrossRefGoogle Scholar
  4. [4]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  5. [5]
    Barpanda, P.; Ati, M.; Melot, B. C.; Rousse, G.; Chotard, J. N.; Doublet, M. L.; Sougrati, M. T.; Corr, S. A.; Jumas, J. C.; Tarascon, J. M. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater. 2011, 10, 772–779.CrossRefGoogle Scholar
  6. [6]
    Sun, Y. K.; Chen, Z. H.; Noh, H. J.; Lee, D. J.; Jung, H. G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S. T.; Amine, K. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 2012, 11, 942–947.CrossRefGoogle Scholar
  7. [7]
    Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.Google Scholar
  8. [8]
    Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.CrossRefGoogle Scholar
  9. [9]
    Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.CrossRefGoogle Scholar
  10. [10]
    Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res. 2015, 8, 3535–3543.CrossRefGoogle Scholar
  11. [11]
    Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.CrossRefGoogle Scholar
  12. [12]
    Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102.CrossRefGoogle Scholar
  13. [13]
    Deng, X.; Liu, X. R.; Yan, H. J.; Wang, D.; Wan, L. J. Morphology and modulus evolution of graphite anode in lithium ion battery: An in situ AFM investigation. Sci. China Chem. 2014, 57, 178–183.CrossRefGoogle Scholar
  14. [14]
    You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.CrossRefGoogle Scholar
  15. [15]
    Wang, X. P.; Hu, P.; Niu, C. J.; Meng, J. S.; Xu, X. M.; Wei, X. J.; Tang, C. J.; Luo, W.; Zhou, L.; An, Q. Y. et al. New-type K0.7Fe0.5Mn0.5O2 cathode with an expanded and stabilized interlayer structure for high-capacity sodium-ion batteries. Nano Energy 2017, 35, 71–78.CrossRefGoogle Scholar
  16. [16]
    Boucher, F.; Gaubicher, J.; Cuisinier, M.; Guyomard, D.; Moreau, P. Elucidation of the Na2/3FePO4 and Li2/3FePO4 intermediate superstructure revealing a pseudouniform ordering in 2D. J. Am. Chem. Soc. 2014, 136, 9144–9157.CrossRefGoogle Scholar
  17. [17]
    Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaim, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74–80.CrossRefGoogle Scholar
  18. [18]
    Wang, P. F.; Yao, H. R.; Zuo, T. T.; Yin, Y. X.; Guo, Y. G. Novel P2-type Na2/3Ni1/6Mg1/6Ti2/3O2 as an anode material for sodium-ion batteries. Chem. Commun. 2017, 53, 1957–1960.CrossRefGoogle Scholar
  19. [19]
    Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.CrossRefGoogle Scholar
  20. [20]
    Guo, J. Z.; Wang, P. F.; Wu, X. L.; Zhang, X. H.; Yan, Q. Y.; Chen, H.; Zhang, J. P.; Guo, Y. G. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance. Adv. Mater. 2017, 29, 1701968.CrossRefGoogle Scholar
  21. [21]
    Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7445–7449.CrossRefGoogle Scholar
  22. [22]
    Singh, G.; Tapia-Ruiz, N.; Lopez del Amo, J. M.; Maitra, U.; Somerville, J. W.; Armstrong, A. R.; Martinez de Ilarduya, J.; Rojo, T.; Bruce, P. G. High voltage Mg-doped Na0.67Ni0.3–xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem. Mater. 2016, 28, 5087–5094.CrossRefGoogle Scholar
  23. [23]
    Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with Reversible O3-P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210.CrossRefGoogle Scholar
  24. [24]
    Xie, Y. Y.; Wang, H.; Xu, G. L.; Wang, J. J.; Sheng, H. P.; Chen, Z. H.; Ren, Y.; Sun, C. J.; Wen, J. G.; Wang, J. et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv. Energy Mater. 2016, 6, 1601306.CrossRefGoogle Scholar
  25. [25]
    Wang, P. F.; You, Y.; Yin, Y. X.; Guo, Y. G. An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J. Mater. Chem. A 2016, 4, 17660–17664.CrossRefGoogle Scholar
  26. [26]
    Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 1980, 99, 81–85.CrossRefGoogle Scholar
  27. [27]
    Vassilaras, P.; Ma, X. H.; Li, X.; Ceder, G. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 2012, 160, A207–A211.CrossRefGoogle Scholar
  28. [28]
    Doeff, M. M.; Peng, M. Y.; Ma, Y. P.; De Jonghe, L. C. Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J. Electrochem. Soc. 1994, 141, L145–L147.CrossRefGoogle Scholar
  29. [29]
    Politaev, V. V.; Nalbandyan, V. B.; Petrenko, A. A.; Shukaev, I. L.; Volotchaev, V. A.; Medvedev, B. S. Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg). J. Solid State Chem. 2010, 183, 684–691.CrossRefGoogle Scholar
  30. [30]
    Schmidt, W.; Berthelot, R.; Sleight, A. W.; Subramanian, M. A. Solid solution studies of layered honeycomb-ordered phases O3–Na3M2SbO6 (M = Cu, Mg, Ni, Zn). J. Solid State Chem. 2013, 201, 178–185.CrossRefGoogle Scholar
  31. [31]
    Zvereva, E. A.; Stratan, M. I.; Ovchenkov, Y. A.; Nalbandyan, V. B.; Lin, J. Y.; Vavilova, E. L.; Iakovleva, M. F.; Abdel-Hafiez, M.; Silhanek, A. V.; Chen, X. J. et al. Zigzag antiferromagnetic quantum ground state in monoclinic honeycomb lattice antimonates A3Ni2SbO6 (A = Li, Na). Phys. Rev. B 2015, 92, 144401.CrossRefGoogle Scholar
  32. [32]
    Viciu, L.; Huang, Q.; Morosan, E.; Zandbergen, H. W.; Greenbaum, N. I.; McQueen, T.; Cava, R. J. Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6. J. Solid State Chem. 2007, 180, 1060–1067.CrossRefGoogle Scholar
  33. [33]
    Politaev, V. V.; Nalbandyan, V. B. Subsolidus phase relations, crystal chemistry and cation-transport properties of sodium iron antimony oxides. Solid State Sci. 2009, 11, 144–150.CrossRefGoogle Scholar
  34. [34]
    Yuan, D. D.; Liang, X. M.; Wu, L.; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X. A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 2014, 26, 6301–6306.CrossRefGoogle Scholar
  35. [35]
    Zvereva, E. A.; Evstigneeva, M. A.; Nalbandyan, V. B.; Savelieva, O. A.; Ibragimov, S. A.; Volkova, O. S.; Medvedeva, L. I.; Vasiliev, A. N.; Klingeler, R.; Buechner, B. Monoclinic honeycomb-layered compound Li3Ni2SbO6: Preparation, crystal structure and magnetic properties. Dalton Trans. 2012, 41, 572–580.CrossRefGoogle Scholar
  36. [36]
    Schmidt, W.; Berthelot, R.; Etienne, L.; Wattiaux, A.; Subramanian, M. A. Synthesis and characterization of O3-Na3LiFeSbO6: A new honeycomb ordered layered oxide. Mater. Res. Bull. 2014, 50, 292–296.CrossRefGoogle Scholar
  37. [37]
    Liu, J.; Yin, L.; Wu, L. J.; Bai, J. M.; Bak, S. M.; Yu, X. Q.; Zhu, Y. M.; Yang, X. Q.; Khalifah, P. G. Quantification of honeycomb number-type stacking faults: Application to Na3Ni2BiO6 cathodes for Na-ion batteries. Inorg. Chem. 2016, 55, 8478–8492.CrossRefGoogle Scholar
  38. [38]
    Li, Z. Y.; Gao, R.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-ion batteries. J. Mater. Chem. A 2015, 3, 16272–16278.CrossRefGoogle Scholar
  39. [39]
    Han, M. H.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 2014, 258, 266–271.CrossRefGoogle Scholar
  40. [40]
    Wang, X. F.; Liu, G. D.; Iwao, T.; Okubo, M.; Yamada, A. Role of ligand-to-metal charge transfer in O3-type NaFeO2–NaNiO2 solid solution for enhanced electrochemical properties. J. Phys. Chem. C 2014, 118, 2970–2976.CrossRefGoogle Scholar
  41. [41]
    Nanba, Y.; Iwao, T.; de Boisse, B. M.; Zhao, W. W.; Hosono, E.; Asakura, D.; Niwa, H.; Kiuchi, H.; Miyawaki, J.; Harada, Y. et al. Redox potential paradox in NaxMO2 for sodium-ion battery cathodes. Chem. Mater. 2016, 28, 1058–1065.CrossRefGoogle Scholar
  42. [42]
    Bucher, N.; Hartung, S.; Franklin, J. B.; Wise, A. M.; Lim, L. Y.; Chen, H. Y.; Weker, J. N.; Toney, M. F.; Srinivasan, M. P2-NaxCoyMn1-yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries-effects of doping and morphology to enhance cycling stability. Chem. Mater. 2016, 28, 2041–2051.CrossRefGoogle Scholar
  43. [43]
    Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J. Phys. Chem. C 2011, 115, 16220–16227.CrossRefGoogle Scholar
  44. [44]
    Guo, S. H.; Yu, H. J.; Jian, Z. L.; Liu, P.; Zhu, Y. B.; Guo, X. W.; Chen, M. W.; Ishida, M.; Zhou, H. S. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem 2014, 7, 2115–2119.CrossRefGoogle Scholar
  45. [45]
    Cui, Z. H.; Guo, X. X.; Li, H. Equilibrium voltage and overpotential variation of nonaqueous Li–O2 batteries using the galvanostatic intermittent titration technique. Energy Environ. Sci. 2015, 8, 182–187.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Chinese Academy of Science (CAS) Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations